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Fundamentals

Fundamentals
refer to textbook

Ch.2 Economic Models

Ch.3 Equilibrium Analysis in Economics

Others: p.82-84, p.230-231, p.318-320, p.327-330,
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Fundamentals basic definitions

P ⇒ Q (≡ not Q⇒ not P ) can be read as

if P then Q

P implies Q

P only if Q

P is a sufficient condition for Q

Q is a necessary condition for P

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 3 / 423



Fundamentals basic definitions

ex: P: George is Mary’s father.

Q: George is a male.

ex: P: All students in this class are undergraduates.

Q: No one in this class is under 10 years old.

ex: Prove that
√

2 is an irrational number.

ex: If you believe in me with all your heart,

you will be able to walk through that wall.
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Fundamentals basic definitions

P ⇔ Q (i.e. P ⇒ Q and Q⇒ P ) can be read as

P if and only if Q

P is equivalent to Q

P is a necessary and sufficient condition for Q

P implies and is implied by Q
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Fundamentals basic definitions

A variable is something whose magnitude can change.

A constant is a magnitude that does not change.

A parameter is a constant that is variable.

ex: QD
X = 25− 2PX + PY + 0.2M (a demand function)

U(X, Y ) = XaY b (an utility function)
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Fundamentals basic definitions

Endogenous variables are those whose solution values we seek

from the model.

Exogenous variables are determined by forces external to the

model and whose magnitudes are accepted as given data only.
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Fundamentals basic definitions

A definitional equation sets up an identity between two

alternate expressions that have exactly the same meaning.

ex: π ≡ R− C, xn ≡ x× x× · · · × x(n terms)

A behavioral equation specifies the manner in which a variable

behaves in response to changes in other variables.

ex: C = Q2 + 2Q+ 35, Y = K0.3L0.7

A conditional equation states a requirement to be satisfied.

ex: Qd = Qs, I = S
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Sets basic properties

Sets

A set is a collection of distinct items thought of as a whole, and

these items are called the elements of the set.

ex: production possibility set budget set
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Sets basic properties

Two ways of writing a set:

Enumeration

ex: A = {1, 2, 3, 4} = {2, 4, 3, 1}
⇒ 3 ∈ A, 5 /∈ A
Z+ = {1, 2, 3, 4, . . .}

Description

ex: B = {x|x ≤ 4, x ∈ Z+} = {x ∈ Z+ : x ≤ 4}

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 10 / 423



Sets basic properties

X is a subset of Y if and only if all the elements of set X are

also elements of set Y , and we write

X ⊆ Y

where ⊆ is the set-inclusion relation.

Z is not a subset of Y iff there exists at least one x such that

x ∈ Z but x /∈ Y and we write

Z * Y
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Sets basic properties
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Venn Diagram

Note that there are no elements in the area filled by slanted lines.

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 12 / 423



Sets basic properties
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Sets basic properties

The empty set (or the null set) is the set with no elements.

The empty set is always written φ or { }.

φ is a subset of any set.

proof:

If φ * A, then there must be at least one element x such

that x ∈ φ but x /∈ A. However, there is no element in φ by

definintion. Therefore, φ ⊆ A.
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Sets basic properties

If there are m elements in set A, then there are 2m subsets

contained in set A.

ex: A = {1, 2, 3}
subsets of A:φ, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

The power set of a set X is the set of all subsets of X, and is

written P(X). That is, P(X) = {A : A ⊆ X}.
ex: A = {1}
P(A) = {φ, {1}}
P(P(A)) = {φ, {φ}, {{1}}, {φ, {1}}}
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Sets basic properties

X is a proper subset of Y iff all the elements in set X are in set

Y , but not all the elements of Y are in X, and we write

X ⊂ Y iff X ⊆ Y but Y * X
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Sets basic properties

Two sets X and Y are equal iff they contain exactly the same

elements, and we write

X = Y iff X ⊆ Y and Y ⊆ X
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Sets basic properties

The union of two sets A and B is the set of elements in one or

other of the sets. We write

A ∪B = {x : x ∈ A or x ∈ B}

A B

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 18 / 423



Sets basic properties

The intersection of two sets X and Y is the set of elements that

are in both X and Y . We write

X ∩ Y = {x : x ∈ X and x ∈ Y }

X Y
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Sets basic properties

The complement of a set X is the set of elements of the

universal set U that are not elements of X, and it is written X.

Thus

X = {x ∈ U : x /∈ X}

XX

U
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Sets basic properties

DeMorgan’s Rule

(1)A ∪B = A ∩B (2)A ∩B = A ∪B

AA BA BA B A B

A B
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Sets basic properties

Laws of Set Operations

commutative law A ∪B = B ∪ A
A ∩B = B ∩ A

associative law A ∪ (B ∪ C) = (A ∪B) ∪ C
A ∩ (B ∩ C) = (A ∩B) ∩ C
A ∪ (B ∩ C) 6= (A ∪B) ∩ C

distributive law A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
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Sets basic properties
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Sets basic properties

The relative difference of X and Y , denoted X − Y , is the set

of elements of X that are not also in Y

X − Y = {x ∈ U : x ∈ X and x /∈ Y }

X Y
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Sets basic properties

A partition of the universal set U is a collection of disjoint

subsets of U , the union of which is U . Thus, if we have n subsets

Xi, i = 1, · · · , n, such that

Xi ∩Xj = φ, i, j = 1, · · · , n, i 6= j

and

X1 ∪X2 ∪X3 ∪ · · · ∪Xn = U

then these n subsets form a partition of U .
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Sets basic properties

ex: Show that for any X ⊆ U , {X,X} is a partition of U .

ex: Consider the collection of subsets of Z+ defined as follows:

Xi = {x ∈ Z+ : 10(i− 1) < x ≤ 10i, i ∈ Z+}

Does the collection of these Xi form a partition of Z+?

Solution

X1 = {x ∈ Z+ : 0 < x ≤ 10}
X2 = {x ∈ Z+ : 10 < x ≤ 20}
X3 = {x ∈ Z+ : 20 < x ≤ 30}
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Sets basic properties

Complex Numbers (C)

Real Numbers (R) Imaginary Numbers

Rational Numbers Irrational Numbers

Integers (Z) Nonintegers

Positive Integers (Z+) Zero Negative Integers
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Sets basic properties

The set R++ ⊂ R consists of the strictly positive real numbers

with the characteristics that

(i) R++ is closed under addition and multiplication.

(ii) For any a ∈ R, exactly one of the following is true:

a ∈ R++ or a = 0 or − a ∈ R++

The set R+ = R++ ∪{0} is the set of nonnegative real numbers.

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 28 / 423



Sets Bounded and Closed Sets

Bounded and Closed Sets

A set S ⊂ R is bounded above if there exists b ∈ R such that

for all x ∈ S, x ≤ b; b is then called an upper bound of S.

A set S ⊂ R is bounded below if there exists a ∈ R such that

for all x ∈ S, x ≥ a; a is then called a lower bound of S.PSfrag replacements
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Sets Bounded and Closed Sets

The supremum of a set S, written sup S, has the properties:

(i) x ≤ sup S for all x ∈ S.

(ii) If b is an upper bound of S, then sup S ≤ b.

The infimum of a set S, written inf S, has the properties:

(i) x ≥ inf S for all x ∈ S.

(ii) If a is a lower bound of S, then a ≤ inf S.
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Sets Bounded and Closed Sets

Conclusions

If the sup or the inf of a subset of R exists, then it is unique.

Every nonempty subset of R that has an upper bound has a

supremum (least upper bound) in R.

Every nonempty subset of R that has a lower bound has an

infimum (greatest lower bound) in R.

If sup X ∈ X, then sup X is called the maximum of X. In the

same way, if inf X ∈ X, then inf X is called the minimum of X.

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 31 / 423



Sets Bounded and Closed Sets

An interval is bounded if it is impossible to go off to infinity while

remaining inside it.

unbounded above

[a,∞) = {x ∈ R : x ≥ a}
(a,∞) = {x ∈ R : x > a}

unbounded below

(−∞, b] = {x ∈ R : x ≤ b}
(−∞, b) = {x ∈ R : x < b}
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Sets Bounded and Closed Sets

A boundary point of an interval, such as [a, b], is a point x0 that

every interval (x0 − ε, x0 + ε) around it, however small, must

contain points that are in [a, b] and points that are not.

For an interior point of [a, b], it is always possible to find an

interval Iε(x0) that lies entirely in [a, b].
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Sets Bounded and Closed Sets

A closed interval contains all (if any) its boundary points.

closed interval : [a, b] = {x ∈ R : a ≤ x ≤ b}

half-open interval : [a, b) = {x ∈ R : a ≤ x < b}
(a, b] = {x ∈ R : a < x ≤ b}

open interval : (a, b) = {x ∈ R : a < x < b}
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Sets Bounded and Closed Sets

A compact interval is defined as an interval that is both closed and

bounded.

ex: [2, 5] closed and bounded

ex: [2, 5) half-open and bounded

ex: [2,∞) closed and unbounded above

ex: (−∞, 5) open and unbounded below
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Sets Euclidean space

Euclidean Space

ordered pairs (a, b)

Note: (a, b) 6= (b, a) unless a = b

ordered triples (a, b, c)

ordered quadruple (a, b, c, d)

ordered quintuple (a, b, c, d, e)
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Sets Euclidean space

The cartesian product of two sets X and Y , written X ⊗ Y , is the

set of ordered pairs formed by taking in turn each element in X and

associating with it each element in Y

X ⊗ Y ≡ {(a, b) : a ∈ X and b ∈ Y }

ex: X = {1, 2, 3}, Y = {a, b}
X ⊗ Y = {(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}

ex: R⊗ R = R2 = {(x, y) : x ∈ R, y ∈ R}
ex: R⊗ R⊗ R = R3 = {(x, y, z) : x ∈ R, y ∈ R, z ∈ R}
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Sets Euclidean space
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Sets Euclidean space

Given points a = (a1, . . . , aN) and b = (b1, . . . , bN) in RN ,

N ≥ 1, the Euclidean distance between them is

d(a, b) =

√√√√
N∑

i=1

(ai − bi)2

ex: a = a1, b = b1,

d(a, b) =
√

(a1 − b1)2 = |a1 − b1|
ex: a = (a1, a2), b = (b1, b2),

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2
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Sets bounded and closed sets (cont.)

An ε-neighborhood of a point x0 ∈ RN is given by the set

Nε(x0) = {x ∈ RN : d(x0,x) < ε, ε ∈ R++}. Simply, Nε(x0) is

the set of points lying within a distance ε of x0.

A boundary point of a set X ⊂ RN is a point x0 such that

every ε-neighborhood Nε(x0) contains points that are in and

points that are not in X.

An interior point of a set X ⊂ RN is a point x0 ∈ X for which

there exists an ε such that Nε(x0) ⊂ X.
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Sets bounded and closed sets (cont.)
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Sets bounded and closed sets (cont.)

A set X ⊂ RN is open if, for every x ∈ X, there exists an ε such

that Nε(x) ⊂ X. That is, an open set is composed of its interior

points only.

A set X ⊂ RN is closed if all the boundary points of X are also

in the set X.

Note: Points in the broken part on the circumference of X (the yellow

disk) do not belong to X, while points in the solid part do.
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Sets bounded and closed sets (cont.)

The interior of a set X ⊂ RN is the open set

Int X = {x ∈ RN : x is an interior point of X}
(the disk without its circumference)

The closure of X is the closed set

Cl X = RN \ Int(RN \X)

(the disk with its entire circumference)

The boundary of X is the closed set

Bdry X = Cl X \ Int X

= {x′ ∈ RN : x′ is a boundary point of X}
(the entire circumference only)
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Sets bounded and closed sets (cont.)

A set X ⊂ RN is open iff its complement X ⊂ RN is a closed

set.

Proof

(i) Suppose that X is not a closed set, then at least one of its

boundary points, say x, is not in X. That is, x /∈ X and thus

x ∈ X.

(ii) Because x is a boundary point of X, every ε-neighborhood

Nε(x) contains points that are in and points that are not in X.

Hence, x is also a boundary point of X.

From (i) and (ii), X is not an open set.
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Sets bounded and closed sets (cont.)

RN ⊆ RN is both closed and open.

Proof

(i) For any point x ∈ RN , we can find an ε > 0 such that

Nε(x) ⊂ RN . Hence, all points in RN are its interior points and

then RN is an open set.

(ii) Since all points in RN are interior points, all (if any) its boundary

points will be in its complement φ. However, φ ⊂ RN and then

all its boundary points are also in RN . Thus, RN is a closed set.

φ is both closed and open.
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Sets bounded and closed sets (cont.)

The intersection of two open sets is open.

Proof

Assume that X, Y ⊂ RN are open and Z = X ∩ Y .

(i) If Z = φ, then it is an open set.

(ii) If Z 6= φ, then for any z0 ∈ Z, we will have z0 ∈ X and z0 ∈ Y .

Since X and Y are open, there must exist εx > 0 and εy > 0 such

that Nεx(z0) ⊂ X and Nεy(z0) ⊂ Y . Let ε = min{εx, εy},
Nε(z0) ⊂ X and Nε(z0) ⊂ Y and thus Nε(z0) ⊂ Z will hold.

From (i) and (ii), Z is an open set.
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Sets bounded and closed sets (cont.)

The union of two closed sets is closed.

Proof:

Assume that X, Y ⊂ RN are closed and Z = X ∪ Y .

(i) X,Y are open.

(ii) Z = X ∩ Y is open.

(iii) Z is closed.

The union of two open sets is open.

The intersection of two closed sets is closed.
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Sets bounded and closed sets (cont.)

A set X ⊂ RN is bounded if, for every x0 ∈ X, there exists a

finite ε <∞ such that X ⊂ Nε(x0).

The intersection of two bounded sets is bounded.

Proof

Assume that X, Y ⊂ RN are bounded and Z = X ∩ Y . For any

z0 ∈ Z, we will have z0 ∈ X. Since X is bounded, there must

exists 0 < ε <∞ such that Z ⊆ X ⊂ Nε(z0). Hence Z is

bounded.

The union of two bounded sets is bounded.
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Sets bounded and closed sets (cont.)

Consider a parameterized maximization problem of the form

M(a) = max f(x, a) such that x ∈ G(a).

Existence of an optimum

If the constraint set G(a) is nonempty and compact, and the

function f is continuous, then there exists a solution x∗ to this

maximization problem.

Uniqueness of optimum

If the function f is strictly concave and the constraint set is

convex, then a solution, should it exist, is unique.
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Sets Convex Sets

Convex Sets
BC = C −B

B

C

O
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Sets Convex Sets

Convex Sets
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B + .5BC

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 51 / 423



Sets Convex Sets

Convex Sets
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Sets Convex Sets

Convex Sets
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Sets Convex Sets

Convex Sets

B

C

O

any point on BC = B + λBC

= B + λ(C −B) = (1− λ)B + λC
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Sets Convex Sets

Convex Combination

Given two points

x′ = (x′1, x
′
2, · · · , x′N)T ∈ RN

and

x′′ = (x′′1, x
′′
2, · · · , x′′N)T ∈ RN ,

their convex combination is the set of points x ∈ RN for

some λ ∈ [0, 1], given by

x = λx′ + (1− λ)x′′

= [ λx′1 + (1− λ)x′′1, · · · , λx′N + (1− λ)x′′N ]T
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Sets Convex Sets

A set X ⊂ RN is convex if for every pair of points x′,x′′ ∈ X,

and any λ ∈ [0, 1], the point

x = λx′ + (1− λ)x′′

also belongs to the set X.

A set X ⊂ RN is strictly convex, if for every pair of points

x′,x′′ ∈ X, x′ 6= x′′, and every λ ∈ (0, 1), we have that x is an

interior point of X, where

x = λx′ + (1− λ)x′′

The intersection of two convex sets is also convex.

The sum of two convex sets is also convex.
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Sets Convex Sets

ex: production possibility set budget set
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Sets Convex Sets
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Functions basic concepts

Functions

Given two sets X and Y , a function (or a mapping /

transformation) from X to Y is a rule that associates with each

element of X, one and only one element of Y .

f : X → Y or y = f(x), x ∈ X
where x is referred to as the independent variable and y as the

dependent variable.
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Functions basic concepts

The set X is called the domain of the function, Y is called the

codomain, and the set of elements in Y associated with the

elements of X by the function is called the range of the function.

The range of a function can be written as the image set.

f(X) = {y ∈ Y : y = f(x), x ∈ X}

If f(X) ⊂ Y , then we say f maps X into Y , while if f(X) = Y ,

then we say that f maps X onto Y .
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Functions basic concepts

If we focus on cases in which Y = R and X ⊆ RN , N ≥ 1, then

f : X → Y will be referred to as a real-valued function.

ex: y = f(x) = 2 + 3x, x ∈ R

y = h(x1, x2) = x1
2x2

3, (x1, x2) ∈ R2
+

y = g(x, z, w) = sin x+ 2z − 3w2, (x, z, w) ∈ R3
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Functions basic concepts
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Functions basic concepts

The inverse function of y = f(x) is to invert this mapping and

write x as a function of y, written as

x = f−1(y)

This can only be done if f is one-to-one (into or onto).
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Functions basic concepts

The composite mapping of two mappings f : X → Y and

g : Y → Z is defined as

g ◦ f : X → Z or z = g[f(x)]

where f(X) ⊆ Y .
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Functions basic concepts

Types of Functions

Polynomial

y = f(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0x
0

ex: y = 3 (constant) ex: y = 2x+ 1 (linear)

ex: y = x2 + 2x+ 5 (quadratic) ex: y = x3 + 1 (cubic)

Rational = a ratio of two polynomials in x

ex: y = x− 1
x2 + 2x+ 4
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Functions basic concepts

Algebraic = functions expressed in terms of polynomials and/or

roots of polynomials

ex: y =
√
x2 + 3

Nonalgebraic(Transcedential)

ex: y = 3x (exponential)

ex: y = log2 x (logarithmic)

ex: y = sinx (trigonometric)
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Functions Concave and Quasiconcave functions

Concave and Quasiconcave functions

Let X ⊂ RN be a convex set and f : X → R. If for any two

points x′,x′′ ∈ X and λ ∈ [0, 1],

f(x) ≥ λf(x′) + (1− λ)f(x′′) = f

where x = λx′ + (1− λ)x′′, then f is said to be a concave

function. That is, the line segment connecting points A and B

lies on or below the surface.

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 67 / 423



Functions Concave and Quasiconcave functions

PSfrag replacements

O
x′ x x′′ x

f(x′)
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y
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Functions Concave and Quasiconcave functions

PSfrag replacements

O
x

y

y = f(x)

The function f is strictly concave if the strict inequality holds

when x′ 6= x′′ and λ ∈ (0, 1), i.e., AB lies entirely below the

surface except for A and B.
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Functions Concave and Quasiconcave functions

PSfrag replacements

x
y

z

f(x, y) = 2− x2 − y2
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Functions Concave and Quasiconcave functions

The function f is convex if

f(x) ≤ λf(x′) + (1− λ)f(x′′) = f

where x = λx′ + (1− λ)x′′ and λ ∈ [0, 1]. That is, the line

segment connecting points A and B lies on or above the surface.
PSfrag replacements

O
x′ x x′′ x

f(x′)

f
f(x)

f(x′′)

y

A

B

y = f(x)
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Functions Concave and Quasiconcave functions

The function f is strictly convex if the strict inequality holds

when x′ 6= x′′ and λ ∈ (0, 1), i.e., AB lies entirely above the

surface except for A and B.

PSfrag replacements

x
y

z

f(x, y) = x2 + y2

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 72 / 423



Functions Concave and Quasiconcave functions

PSfrag replacements

O
x

y

y = f(x)
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Functions Concave and Quasiconcave functions

X ⊂ RN , suppose that f : X → R and g : X → R are two

concave functions. Show that f + g is concave.

Proof

Let x′, x′′ ∈ X, x = λx′ + (1− λ)x′′ and λ ∈ [0, 1]. Because

h(x) = f(x) + g(x)

≥ [λf(x′) + (1− λ)f(x′′)] + [λg(x′) + (1− λ)g(x′′)]

= λ[f(x′) + g(x′)] + (1− λ)[f(x′′) + g(x′′)]

= λh(x′) + (1− λ)h(x′′),

then the sum of two concave functions is also concave.
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Functions Concave and Quasiconcave functions

X ⊂ RN , if f : X → R and g : X → R are two concave

functions and at least one of them is strictly concave, then

f + g is strictly concave.

The sum of two convex functions is also convex. And if at least

one of them is strictly convex, their sum will be strictly convex.

The negative of a (strictly) concave function is (strictly) convex.
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Functions Concave and Quasiconcave functions

A level set of the function y = f(x) is the set

L = {x ∈ RN : f(x) = c}
for some given number c ∈ R

The better set of the point x0 is

B(x0) = {x : f(x) ≥ f(x0)}

PSfrag replacements

O x1 x2 x3 x

c

y y = f(x)

• L(c) = {x1, x2, x3}

• B(x1) = B(x2) = B(x3)

= {x ∈ R : x ∈ [x1, x2] ∪ [x3,∞)}
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Functions Concave and Quasiconcave functions

PSfrag replacements
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Functions Concave and Quasiconcave functions

PSfrag replacements
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Functions Concave and Quasiconcave functions

X ⊂ RN , suppose that f : X → R is a concave function. Show

that, for every point x0 ∈ X, the better set B(x0) is convex.

Proof

Let x′, x′′ ∈ B(x0), then f(x′) ≥ f(x0) and f(x′′) ≥ f(x0).

Since f is a concave function, for any λ ∈ [0, 1],

f(x) ≥ λf(x′) + (1− λ)f(x′′)

≥ λf(x0) + (1− λ)f(x0) = f(x0).

Thus, x ∈ B(x0). That is, B(x0) is a convex set.
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Functions Concave and Quasiconcave functions

The better set is also called the upper contour set.

The worse set (or the lower contour set) of the point x0 is

W (x0) = {x : f(x) ≤ f(x0)}

If X ⊂ RN , and f : X → R is a convex function, then, for every

point x0 ∈ X, the worse set W (x0) is convex.
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Functions Concave and Quasiconcave functions

f is (strictly) quasiconcave if and only if

f(x) ≥ (>)Min{f(x′), f(x′′)}

for all x′,x′′ ∈ X and λ ∈ [0, 1]. (x′ 6= x′′, λ ∈ (0, 1))

PSfrag replacements

y

xx′ x′′

x∗
y = f(x)

−4
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y

PSfrag replacements

y
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−4
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−4
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y

f is (strictly) quasiconvex if and only if

f(x) ≤ (<)Max{f(x′), f(x′′)}

for all x′,x′′ ∈ X and λ ∈ [0, 1]. (x′ 6= x′′, λ ∈ (0, 1))
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Functions Concave and Quasiconcave functions

Let X ⊂ RN be a convex set, f : X → R. Show that f is a

quasiconcave function iff, for every point x0 ∈ X, the better set

B(x0) is convex.

That is,

x′ ∈ B(x0) and x′′ ∈ B(x0) ⇒ x ∈ B(x0)

or

f(x′) ≥ f(x0) and f(x′′) ≥ f(x0) ⇒ f(x) ≥ f(x0)

for any x′,x′′ ∈ X and λ ∈ [0, 1].
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Functions Concave and Quasiconcave functions

Proof

(i) If f is quasiconcave, then B(x0) is convex.

Given x′, x′′ ∈ B(x0) so that f(x′) ≥ f(x0) and f(x′′) ≥ f(x0),

since f is quasiconcave, for any λ ∈ [0, 1],

f(x) ≥ Min{f(x′), f(x′′)} ≥ f(x0)

⇒ x ∈ B(x0). That is, B(x0) is convex.

(ii) If B(x0) is convex, then f is quasiconcave.

Assume that f(x′) ≥ f(x′′) so that x′, x′′ ∈ B(x′′).

Since B(x′′) is a convex set, x ∈ B(x′′)

⇒ f(x) ≥ f(x′′)= Min{f(x′), f(x′′)}
⇒ f is quasiconcave.
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Functions Concave and Quasiconcave functions
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Functions Concave and Quasiconcave functions

X ⊂ RN , f : X → R, then the hypograph of f is a set defined

as

HGf = {(x, y) : x ∈ X, y ∈ R, y ≤ f(x)}

and the epigraph as

EGf = {(x, y) : x ∈ X, y ∈ R, y ≥ f(x)}.

PSfrag replacements

y
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−4
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y
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Functions Concave and Quasiconcave functions

If and only if f is a concave function, its hypograph is convex.

Proof:

(i) By definition, (x′, f(x′)) ∈ HGf and (x′′, f(x′′)) ∈ HGf .

Therefore, for λ ∈ [0, 1], (x, f) ∈ HGf since HGf is convex.

⇒ f ≤ f(x) by definition of HGf . Thus, f is a concave function.

(ii) Assume that (x′, y′) and (x′′, y′′) ∈ HGf , thus y′ ≤ f(x′) and

y′′ ≤ f(x′′). ⇒ y ≤ f ≤ f(x)

↑
concave function

⇒ (x, y) ∈ HGf

⇒ HGf is a convex set.
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Linear Algebra

Linear Algebra
refer to textbook

Ch.4 Linear Models and Matrix Algebra

Ch.5 Linear Models and Matrix Algebra (continued)
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Linear Algebra basic concepts

A matrix is a rectangular array of numbers enclosed in

parentheses. It is conventionally denoted by a capital letter.

A =

[
1 2

3 1

]
, B =




5 3 10 12

6 5 9 15

7 5 8 14

17 13 22 31

32 17 35 44




The number of rows and the number of columns determine the

dimension (the order) of the matrix.

2× 2 5× 4
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Linear Algebra basic concepts

A matrix A of order m× n can be explicitly written as

A = [ aij ], i = 1 ∼ m, j = 1 ∼ n

=




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn



m×n
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Linear Algebra basic concepts

An array that consists of only one row or one column is known as

a vector.

ex:
[

5 3 5 4
]

1×4
row matrix (row vector)

ex:

[
−1

2

]

2×1

column matrix (column vector)
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Linear Algebra basic concepts

Two matrices (say A = [ aij ], B = [ bij ]) are equal (A = B)

iff (i) they have the same dimension and

(ii) all the corresponding elements are equal (aij = bij, ∀ i, j).

ex:

[
3 2

x+ y 1

]

2×2

=

[
3 y

2 1

]

2×2

⇒ y = 2, x = 0.

ex:

[
3 4 x

2 5 7

]

2×3

=

[
3 w 1

z 5 y

]

2×3

⇒ x = 1, y = 7, z = 2, w = 4.
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Linear Algebra basic concepts

A matrix that has the same number of rows and columns is called

a square matrix.

ex: A =

[
1 2

3 1

]

2×2

O B =

[
3 4 1

2 5 7

]

2×3

X

C =



c11 c12 c13

c21 c22 c23

c31 c32 c33




3×3

O
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Linear Algebra basic concepts

Any square matrix that has only nonzero entries on the main

diagonal and zeros everywhere else is known as a diagonal

matrix.

ex: P =

[
2 0

0 3

]
, Q =




1 0 0

0 3 0

0 0 5




I3 =




1 0 0

0 1 0

0 0 1


 (identity matrix)
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Linear Algebra basic concepts

A matrix with all its entries being zero is known as the null

matrix.

ex:

02×3 =

[
0 0 0

0 0 0

]

03×3 =




0 0 0

0 0 0

0 0 0



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Linear Algebra basic concepts

The transpose matrix, AT (or A′), is the original matrix A with

its rows and columns interchanged.

ex:

A =

[
1 2 3

2 5 7

]

2×3

AT =




1 2

2 5

3 7




3×2

(AT )T =

[
1 2 3

2 5 7

]
= A
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Linear Algebra basic concepts

A matrix A that is equal to its transpose AT is called a

symmetric matrix.

ex: A =

[
5 1

9 3

]

2×2

X AT =

[
5 9

1 3

]

2×2

ex: B =

[
1 2 4

3 8 0

]

2×3

X BT =




1 3

2 8

4 0




3×2

ex: C =




1 3 5

3 2 8

5 8 4




3×3

O CT =




1 3 5

3 2 8

5 8 4




3×3
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Linear Algebra basic concepts

The sum of two matrices is a matrix, the elements of which are

the sums of the corresponding elements of the matrices.

[ aij ] + [ bij ] = [ cij ], where cij = aij + bij, ∀ i, j

ex:

[
4 9

2 1

]
+

[
2 0

0 7

]
=

[
6 9

2 8

]

ex:

[
1 2 1

3 1 2

]
+

[
0 3 5

1 2 −1

]
=

[
1 5 6

4 3 1

]
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Linear Algebra basic concepts

Two matrices are conformable for addition if they have the same

dimension. On the other hand, two matrices are not

conformable for addition if their dimensions are different.

ex:

[
1 2

3 1

]
+

[
2 −5

4 0

]
O

[
3 4 1

6 5 3

]
+

[
0 2

−5 8

]
X
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Linear Algebra basic concepts

The sum of a matrix A and a (conformable) null matrix is A itself.

ex:

[
4 9

2 1

]
+

[
0 0

0 0

]
=

[
4 9

2 1

]

ex:

[
1 2 1

3 1 2

]
+

[
0 0 0

0 0 0

]
=

[
1 2 1

3 1 2

]
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Linear Algebra basic concepts

The transpose of a sum of matrices is the sum of the transposes:

(A+B)T = AT +BT

ex:

[
4 9

2 1

]T
+

[
2 0

0 7

]T
=

[
4 2

9 1

]
+

[
2 0

0 7

]

=

[
6 2

9 8

]
=

[
6 9

2 8

]T

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 100 / 423



Linear Algebra basic concepts

Scalar multiplication is carried out by multiplying each element

of the matrix by the scalar.

k[ aij ] = [ kaij ] = [ aij ]k

ex: 10

[
1 3

5 7

]
=

[
10 30

50 70

]
=

[
1 3

5 7

]
10

ex: 2

[
−1

2

]
=

[
−2

4

]
=

[
1

−2

]
(−2)
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Linear Algebra basic concepts

Matrix subtraction can be defined by scalar multiplication and

addition.

A−B = A+ (−1)B

ex:

[
1 2

3 1

]
−
[

2 −5

4 0

]
=

[
1 2

3 1

]
+ (−1)

[
2 −5

4 0

]

=

[
1 2

3 1

]
+

[
−2 5

−4 0

]
=

[
−1 7

−1 1

]
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Linear Algebra basic concepts

Two matrices A and B of dimensions m× n and n× q
respectively are conformable to form the product matrix

Cm×q = Am×nBn×q,

since the number of columns of the lead matrix A is equal to the

number of rows of the lag matrix B.

The ijth element of the product matrix, cij, is obtained by

multiplying the elements of the ith row of A by the corresponding

elements of the jth column of B and adding the resulting

products.
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Linear Algebra basic concepts

[ aik ]m×n [ bkj ]n×q = [ cij ]m×q, where cij = Σkaikbkj, ∀i, j

ex:




1 3

2 8

4 0




3×2

[
5 1

9 3

]

2×2

=




1(5) + 3(9) 1(1) + 3(3)

2(5) + 8(9) 2(1) + 8(3)

4(5) + 0(9) 4(1) + 0(3)




=




32 10

82 26

20 4




3×2

ex:

[
2 4

1 2

]

2×2

[
1 2 2

3 1 4

]

2×3

=

[
14 8 20

7 4 10

]

2×3
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Linear Algebra basic concepts

The transpose matrix of the product matrix AB, where A and B

are two conformable matrices, is defined as the product of the

transposes, with the order of the multiplication reversed.

(AB)T = BTAT

(ABC)T = CT (AB)T = CTBTAT

(ABCD)T = DTCTBTAT
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Linear Algebra basic concepts







1 3

2 8

4 0



[

5 1

9 3

]


T

=




32 10

82 26

20 4




T

=

[
32 82 20

10 26 4

]

=

[
5 9

1 3

][
1 2 4

3 8 0

][
5 1

9 3

]T



1 3

2 8

4 0




T
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Linear Algebra basic concepts

Q: AB = BA ?

A: In general, the product matrix AB (premultiplying B by A) does

not equal the product matrix BA (postmultiplying B by A).

(i) AB or BA may not be well defined.

(ii) Even if both AB and BA are well defined, they are not equal in

general.
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Linear Algebra basic concepts

ex: A =

[
2 4

1 2

]

2×2

, B =

[
1 2 2

3 1 4

]

2×3

AB =

[
14 8 20

7 4 10

]

2×3

, while BA is not well defined.

Both of the product matrices AB and BA are well defined only if

A and B are square matrices of the same order or for A of

dimension m× n with B of dimension n×m.
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Linear Algebra basic concepts

ex: A =

[
2 4

1 3

]
, B =

[
1 2

2 0

]

AB =

[
10 4

7 2

]
, BA =

[
4 10

4 8

]
⇒ AB 6= BA

ex: A =

[
5 1 0

2 1 −1

]
, B =




4 3

1 1

0 2




AB =

[
21 16

9 5

]
, BA =




26 7 −3

7 2 −1

4 2 −2


 ⇒ AB 6= BA
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Linear Algebra basic concepts

The multiplication of any matrix and a (conformable) null matrix

is a null matrix.

ex:

[
2 4

1 2

][
0 0 0

0 0 0

]
=

[
0 0 0

0 0 0

]

The multiplication of any matrix and a (conformable) identity

matrix is the matrix itself.

ex:

[
2 4

1 2

][
1 0

0 1

]
=

[
2 4

1 2

]
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Linear Algebra basic concepts

Q: AB = 0 ⇒ A = 0 or B = 0 ?

ex:

[
2 4

1 2

][
−2 4

1 −2

]
=

[
0 0

0 0

]

A: Negative!

Q: CD = CE ⇒ D = E ?

ex:

[
2 3

6 9

][
1 1

1 2

]
=

[
5 8

15 24

]
=

[
2 3

6 9

][
−2 1

3 2

]

A: Negative!
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Linear Algebra basic concepts

The matrix An is the product matrix obtained by multiplying the

square matrix A by itself n times.

A square matrix A of any order is idempotent if

A = A2 = A3 = · · ·

where A2 = AA,A3 = AAA, etc.

ex: A =




1/6 −1/3 1/6

−1/3 2/3 −1/3

1/6 −1/3 1/6



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Linear Algebra basic concepts

The trace of a square matrix A is given by the sum of the

elements of the main diagonal. In other words, if A is n× n, then

the trace is defined as

trace(An) = a11 + a22 + · · ·+ ann

ex: A =

[
5 9

1 3

]
, trace(A) = 8

B =




1 2 3

4 5 6

7 8 9


, trace(B) = 15
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Linear Algebra basic concepts

For two matrices A and B of dimensions m× n and n×m
respectively, we have that AB is m×m and BA is n× n and

trace(AB) = trace(BA)

proof:

Let C = AB and D = BA.

trace(AB) =
m∑

i=1

cii =
m∑

i=1

(
n∑

j=1

aijbji

)

=
n∑

j=1

(
m∑

i=1

bjiaij

)
=

n∑

j=1

djj = trace(BA)
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Linear Algebra basic concepts

The inverse matrix A−1 of a square matrix A of order n is the

matrix that satisfies the condition that

AA−1 = A−1A = In

where In is the identity matrix of order n.

Any matrix A for which A−1 does not exist is known as a

singular matrix.

The matrix A for which A−1 exists is known as a nonsingular

matrix.
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Linear Algebra basic concepts

Properties of the Inverse

The inverse of an inverse matrix reproduces the original matrix

(A−1)−1 = A

The inverse of a matrix is unique

(AB)−1 = B−1A−1, provided that (i) A and B are of the same

order, and (ii) A−1 and B−1 both exist.

The inverse of the transpose equals the transpose of the inverse

(AT )−1 = (A−1)T
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Linear Algebra basic concepts

The inverse of an inverse matrix reproduces the

original matrix

(A−1)−1 = A

proof:

Let B = (A−1)−1.

∵ A−1B = A−1(A−1)−1 = I

⇒ AA−1B = AI

∴ B = A Done!
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Linear Algebra basic concepts

The inverse of a matrix is unique

proof:

Assume that AB = I.

∵ A−1AB = A−1I

⇒ B = A−1

∴ Any conformable matrix B satisfying AB = I must

be A−1.

Done!
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Linear Algebra basic concepts

(AB)−1 = B−1A−1, provided that (i) A and B are of

the same order, and (ii) A−1 and B−1 both exist.

proof:

(AB)−1(AB) = I

⇒ (AB)−1ABB−1A−1 = IB−1A−1

⇒ (AB)−1 = B−1A−1

Done!
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Linear Algebra basic concepts

The inverse of the transpose equals the transpose of

the inverse

(AT )−1 = (A−1)T

proof:

(A−1)TAT = (AA−1)T = IT = I

⇒ (A−1)T = (AT )−1

Done!
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Linear Algebra system of linear equations

For a system of linear equations,

x + 2y − 2z = 0

−x + y + z = 5

4x − y + 2z = 13

there are three interesting questions:

Does a solution exist?

How many solutions are there?

Is there an efficient algorithm that computes actual solutions?
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Linear Algebra system of linear equations

Way 1: Substitution

x + 2y − 2z = 0 (1a)

−x + y + z = 5 (2a)

4x − y + 2z = 13 (3a)

⇒ x = −2y + 2z (1b)

⇒ 3y − z = 5 (2b)

−9y + 10z = 13 (3b)

⇒ z = 3y − 5 (2c)

⇒ 21y = 63 (3c)

⇒ y = 3, z = 4, x = 2
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Linear Algebra system of linear equations

Way 2: Gaussian Elimination

1x + 2y − 2z = 0 (1a)

−x + y + z = 5 (2a)

4x − y + 2z = 13 (3a)

⇒
x + 2y − 2z = 0 (1a)

3y − z = 5 (2b)

− 9y + 10z = 13 (3b)

⇒
x + 2y − 2z = 0 (1a)

3y − z = 5 (2b)

7z = 28 (3c)

⇒ z = 4, y = 3, x = 2 (back substitution)
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Linear Algebra system of linear equations

Way 2′: Gauss-Jordan Elimination

x + 2y − 2z = 0 (1a)

3y − z = 5 (2b)

z = 4 (3d)

⇒
x + 2y = 8 (1b)

3y = 9 (2c)

z = 4 (3d)

⇒
x = 2 (1c)

y = 3 (2c)

z = 4 (3d)
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Linear Algebra elementary row operations

x + 2y + 3z = 1

3x + 2y + z = 1

[
1 2 3

3 2 1

]
is called the coefficient matrix of the system

and

[
1 2 3 1

3 2 1 1

]
the augmented matrix.
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Linear Algebra elementary row operations

A row of a matrix is said to have k leading zeros if the first k

elements of the row are all zeros and the (k + 1)th element of the

row is not zero.

A matrix is in row echelon form if each row has more leading

zeros than the row preceding it.

The first nonzero entry in each row of a row echelon matrix is

called a pivot.




1 2 −2 0

0 3 −1 5

0 0 7 28



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Linear Algebra elementary row operations

Elementary row operations:

1. interchange two rows of a matrix

2. multiply each element in a row by the same nonzero number

3. change a row by adding to it a multiple of another row

A row echelon matrix in which (1) each pivot is a 1 and (2) each

column containing a pivot contains no other nonzero entries is

said to be in reduced row echelon form.



1 0 0 2

0 1 0 3

0 0 1 4



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Linear Algebra systems with many or no solutions

x + 2y + 3z = 1

3x + 2y + z = 1

[
1 2 3 1

3 2 1 1

]
⇒

[
1 2 3 1

0 −4 −8 −2

]

⇒
[

1 2 3 1

0 1 2 0.5

]
⇒

[
1 0 −1 0

0 1 2 0.5

]

⇒ x = z

y = 0.5− 2z
⇒ infinitely many solutions!
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Linear Algebra systems with many or no solutions

x + 3y = 1

3x + y = 1

2x + 3y = 1

⇒




1 3 1

3 1 1

2 3 1




⇒




1 3 1

0 −8 −2

0 −3 −1


 ⇒




1 3 1

0 1 0.25

0 −3 −1




⇒




1 0 0.25

0 1 0.25

0 0 −0.25


 ⇒ no solution!
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Linear Algebra systems with many or no solutions

x + 3y = 1

3x + y = 1

2x + 2y = 1

⇒




1 3 1

3 1 1

2 2 1




⇒




1 3 1

0 −8 −2

0 −4 −1


 ⇒




1 3 1

0 1 0.25

0 −4 −1




⇒




1 0 0.25

0 1 0.25

0 0 0


 ⇒ exactly one solution!
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Linear Algebra systems with many or no solutions

B =




1 w w 0 0 w 0 d

0 0 0 1 0 w 0 d

0 0 0 0 1 w 0 d

0 0 0 0 0 0 1 d




where w, d may be either zero or nonzero.

If the jth column of the row echelon matrix B contains a pivot,

then xj is called a basic variable.

If the jth column of B does not contain a pivot, then we call xj a

free variable.
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Linear Algebra rank

The rank of a matrix is the number of nonzero rows in its row

echelon form.

Let A be the coefficient matrix and Â be the corresponding

augmented matrix. Then

1. rank(A) ≤ rank(Â)

2. rank(A) ≤ number of rows of A

3. rank(A) ≤ # col.s of A
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Linear Algebra rank

A system of linear equations with coefficient matrix A and

augmented matrix Â has a solution if and only if

rank(A) = rank(Â)

A system of linear equations must have either (1) no solution,

(2) one solution, or (3) infinitely many solutions.

If a system has exactly one solution, then A has at least as

many rows(or equations) as columns(or unknowns).

# rows of A ≥ # col.s of A
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Linear Algebra rank

If a system has more unknowns than equations, then it must

have either no solution or infinitely many solutions.

If a system in which all the elements in RHS are 0, then it is

called homogeneous and must have at least one solution.

A homogeneous system of linear equations which has more

unknowns than equations must have infinitely many solutions.

A system with A will have a solution for every RHS if and only

if

rank(A) = # rows of A
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Linear Algebra rank

If a system has more equations than unknowns, then there exists

an RHS such that the resulting system has no solution.

Any system having A will have at most one solution for every

RHS if and only if

rank(A) = # col.s of A

A system has exactly one solution for every RHS if and only if

# rows of A = # col.s of A = rank(A)
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Linear Algebra rank

5x + 2y = 3

−x − 4y = 3

⇒
[

5 2

−1 −4

][
x

y

]
=

[
3

3

]

4x − y + 2z = 13

x + 2y − 2z = 0

−x + y + z = 5

⇒




4 −1 2

1 2 −2

−1 1 1






x

y

z


 =




13

0

5



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Linear Algebra rank

a11x1 + a12x2 + · · ·+ a1nxn = d1

a21x1 + a22x2 + · · ·+ a2nxn = d2

...

an1x1 + an2x2 + · · ·+ annxn = dn

⇒




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann







x1

x2

...

xn




=




d1

d2

...

dn




n× n n× 1 n× 1

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 137 / 423



Linear Algebra rank

Quiz
Consider the linear system of equations Ax = d.

If # equations < # unknowns, then

Ax = 0 has infinitely many solutions.

for any given d, Ax = d has 0 or infinitely many solutions.

if rank(A) = # equations, Ax = d has infinitely many solutions

for every d.
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Linear Algebra rank

Quiz
Consider the linear system of equations Ax = d.

If # equations > # unknowns, then

Ax = 0 has one or infinitely many solutions.

for any given d, Ax = d has 0, 1, or infinitely many solutions.

if rank(A) = # unknowns, Ax = d has 0 or 1 solution for every

d.
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Linear Algebra rank

Quiz
Consider the linear system of equations Ax = d.

If # equations = # unknowns, then

Ax = 0 has one or infinitely many solutions.

for any given d, Ax = d has 0, 1, or infinitely many solutions.

if rank(A) = # equations = #unknowns, Ax = d has exactly

one solution for every d.
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Linear Algebra rank

Given A is a square matrix. Then

Ax = d

⇒ A−1Ax = A−1d

⇒ x = A−1d

Q: When does a system of linear equations Ax = d have a

unique solution ?

A: A−1 exists (i.e., A is nonsingular).

Q: Show that Ax = d cannot have exactly two different solutions.
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Linear Algebra determinants

The quantity a11a22 − a12a21 is called the determinant of the

2 × 2 square matrix A =

[
a11 a12

a21 a22

]
and is composed of all

the elements of A. It is denoted by |A| or det(A).

ex:

∣∣∣∣∣
1 2

3 −1

∣∣∣∣∣ = 1(−1)− 2(3) = −7

∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣
= a11a22a33 + a21a32a13 + a31a23a12

−a13a22a31 − a12a21a33 − a11a32a23

Determinants of order higher than 3 must be evaluated by

Laplace expansion.
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Linear Algebra determinants

Consider an n× n matrix, A, with typical element aij. The

minor associated with each element is denoted Mij and is the

determinant of the (n− 1)× (n− 1) matrix formed by deleting

the ith row and jth column of the matrix A.

ex: A =




a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann




n×n

⇒M11 =

∣∣∣∣∣∣∣∣∣∣

a22 a23 · · · a2n

a32 a33 · · · a3n

...
...

. . .
...

an2 an3 · · · ann

∣∣∣∣∣∣∣∣∣∣
(n−1)×(n−1)
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Linear Algebra determinants

The cofactor of element aij is the minor of that element

multiplied by (−1)i+j, and is denoted Cij:

Cij = (−1)i+jMij, i, j = 1, 2, . . . , n

∣∣∣∣∣∣∣∣∣∣∣∣

+ − + · · · (−1)1+n

− + − · · · (−1)2+n

+ − + · · · (−1)3+n

...
...

...
. . .

...

(−1)n+1 (−1)n+2 (−1)n+3 · · · +

∣∣∣∣∣∣∣∣∣∣∣∣

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 144 / 423



Linear Algebra determinants

A =




1 3 0 2

−2 −5 7 4

3 5 2 1

−1 0 −9 −5




⇒M22 =

∣∣∣∣∣∣∣

1 0 2

3 2 1

−1 −9 −5

∣∣∣∣∣∣∣
, C22 = M22

A =




1 3 0 2

−2 −5 7 4

3 5 2 1

−1 0 −9 −5




⇒M14 =

∣∣∣∣∣∣∣

−2 −5 7

3 5 2

−1 0 −9

∣∣∣∣∣∣∣
, C14 = −M14
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Linear Algebra determinants

The determinant of an n× n matrix A may be found by adding

along any row or column the product of each element aij and its

associated cofactor, that is,

|A| =
n∑

j=1

aijCij =
n∑

i=1

aijCij

by ith row by jth column

ex:

∣∣∣∣∣∣∣

3 0 4

2 3 2

0 5 −1

∣∣∣∣∣∣∣
= 3

∣∣∣∣∣
3 2

5 −1

∣∣∣∣∣− 0

∣∣∣∣∣
2 2

0 −1

∣∣∣∣∣+ 4

∣∣∣∣∣
2 3

0 5

∣∣∣∣∣
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Linear Algebra determinants

Properties of Determinant

1. The interchange of rows and columns does not change the value

of a determinant. ⇒ |A| = |AT |

2. The interchange of any two rows (columns) will alter the sign of

the determinant.

3. The multiplication of any one row (column) by a scalar λ will

change the value of the determinant λ-fold.

4. The addition (subtraction) of a multiple of any row (column) to

(from) another row (column) will leave the value of the

determinant unchanged.
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Linear Algebra determinants

5. The expansion of a determinant by alien cofactors (the

cofactors of a “wrong” row or column) always yields zero.

⇒
n∑
j=1

aijCkj = |A∗|

= |A|’s kth row replaced by its ith row

⇒ the kth row and the ith row in |A∗| are identical

⇒ |A∗| = 0
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Linear Algebra determinants

An n× n matrix, A, has an associated cofactor matrix that is

also n× n and is formed by replacing each aij with its
associated cofactor.




C11 C12 · · · C1n

C21 C22 · · · C2n

...
...

. . .
...

Cn1 Cn2 · · · Cnn




The adjoint matrix of an n× n matrix A, denoted adj(A), is the

transpose of the cofactor matrix of A.

The inverse of an n× n matrix A is the adjoint matrix of A

divided by the determinant of A:

A−1 = 1
|A| adj(A)
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Linear Algebra determinants

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann



⇒ adj(A) =




C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
. . .

...

C1n C2n · · · Cnn




⇒ A adj(A) =




n∑
j=1

a1jC1j

n∑
j=1

a1jC2j · · ·
n∑
j=1

a1jCnj

n∑
j=1

a2jC1j

n∑
j=1

a2jC2j · · ·
n∑
j=1

a2jCnj

...
...

. . .
...

n∑
j=1

anjC1j

n∑
j=1

anjC2j · · ·
n∑
j=1

anjCnj




=




|A| 0
. . .

0 |A|


 = |A| In
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Linear Algebra determinants

ex: B =

[
1 0

9 2

]
C =




4 −2 1

7 3 3

2 0 1




⇒ B−1 = 1
|B| adj(B) = 1

2

[
2 −9

0 1

]T
=

[
1 0

−4.5 0.5

]

⇒ C−1 = 1
|C| adj(C)

= 1
8




3 −1 −6

2 2 −4

−9 −5 26




T

= 1
8




3 2 −9

−1 2 −5

−6 −4 26




|A| 6= 0 ⇔ A−1 exists ⇔ A is nonsingular

⇔ Ax = d has a unique solution.
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Linear Algebra determinants

Cramer’s Rule
Ax = d

⇒ x = A−1d =
1

|A|adj(A)d

⇒




x1
...

xn


 = 1

|A|




C11 · · · Cn1
...

. . .
...

C1n · · · Cnn







d1
...

dn


 = 1

|A|




n∑
i=1

diCi1

...
n∑
i=1

diCin




Note that
n∑
i=1

diCij is nothing but the evaluation of the

determinant derived from A by replacing its jth column by d.
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Linear Algebra determinants

ex:




4 −1 2

1 2 −2

−1 1 −1






x

y

z


 =




13

0

5




x = 1
∆

∣∣∣∣∣∣∣

13 −1 2

0 2 −2

5 1 1

∣∣∣∣∣∣∣
, y = 1

∆

∣∣∣∣∣∣∣

4 13 2

1 0 −2

−1 5 1

∣∣∣∣∣∣∣
,

z = 1
∆

∣∣∣∣∣∣∣

4 −1 13

1 2 0

−1 1 5

∣∣∣∣∣∣∣
, where ∆ =

∣∣∣∣∣∣∣

4 −1 2

1 2 −2

−1 1 −1

∣∣∣∣∣∣∣
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Linear Algebra determinants

Vector d

Determinant |A|

d 6= 0 d = 0

(nonhomogeneous system) (homogeneous system)

|A| 6= 0 a unique, nontrivial a unique, trivial

(A is nonsingular) solution x 6= 0 solution x = 0

|A| = 0

(A is

singular)

dependent
infinite number of infinite number of

solutions solutions

inconsistent no solution not applicable
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Linear Algebra determinants

A triangular matrix is composed of a nonzero element in the

positions above (below) the main diagonal and zero in the

positions below (above).

The determinant of a triangular matrix equals the product of the

diagonal elements.

ex: A =

[
1 0

2 2

]
⇒ |A| =

∣∣∣∣∣
1 0

2 2

∣∣∣∣∣ = 2

B =




4 0 0

7 3 0

2 1 5


 ⇒ |B| =

∣∣∣∣∣∣∣

4 0 0

7 3 0

2 1 5

∣∣∣∣∣∣∣
= 60
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Linear Algebra linear independence

Let v =




v1

v2

...

vn



∈ Rn so that vT =

[
v1 v2 · · · vn

]

The length of an n-dimensional vector v is

‖v‖ =
√
vTv =

√
v2

1 + v2
2 + · · ·+ v2

n
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Linear Algebra linear independence

PSfrag replacements

u = (3, 1)

v = (1, 2)

3v = (3, 6)

−v = (−1,−2)

u+ v

u− v

x

y
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Linear Algebra linear independence

Two vectors in R2, u and v, are linearly independent if

λ1u + λ2v = 0

holds only when the scalars λ1 and λ2 are both zero. Here 0 is

the null vector.

Otherwise, if there exist λ1 and λ2 are neither zero, then u and v

would point in the same direction and be linearly dependent.

That is,

u = −λ2

λ1

v
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Linear Algebra linear independence

Any vector in R2 can be expressed as a linear combination of

two linearly independent vectors in R2.

proof:

Given two linearly independent vectors, v and w in R2. For any

vector u, we write u = λ1v + λ2w and if λ =
[
λ1 λ2

]T
has a

solution, then the proof is done.

λ1v + λ2w =

[
v1 w1

v2 w2

][
λ1

λ2

]
= u

Since v and w are linearly independent,

∣∣∣∣∣
v1 w1

v2 w2

∣∣∣∣∣ 6= 0 which

means λ has a solution.
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Linear Algebra linear independence

Let V = {v1,v2, . . . ,vn} be a set of vectors in Rm, then the

vectors in V are linearly dependent iff

(i) some one of them can be expressed as a linear combination of the

remaining vectors, or

(ii) there exists a set of scalars, (λ1, λ2, . . . , λn) (which are not all

zero), such that

n∑

i=1

λivi = λ1v1 + λ2v2 + · · ·+ λnvn = 0

If
∑n

i=1 λivi = 0 only holds when λi = 0, ∀i, then these vectors

are linearly independent.
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Linear Algebra linear independence

If v and w are vectors in Rn, then v + w is a vector in Rn and so

is λv. We say that Rn is a vector space for which addition and

scalar multiplication can be defined and which is closed under

these operations.

Once we have found n linearly independent vectors in the

n-space, all the other vectors in the space can be expressed as a

linear combination of these n vectors.
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Linear Algebra linear independence

A basis is a set of linearly independent vectors that generates all

vectors in the space.

ex: e1 =

[
1

0

]
, e2 =

[
0

1

]
=⇒ R2

e1 =




1

0

0


, e2 =




0

1

0


, e3 =




0

0

1


 =⇒ R3
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Univariate Calculus and Optimization

Univariate Calculus

and Optimization
refer to textbook

Ch.6 Comparative Statics and the Concept of Derivative

Ch.7 Rules of Differentiation and Their Use in Comparative

Statics

Ch.8 Comparative-Static Analysis of General-Function Models

Ch.9 Optimization: A Special Variety of Equilibrium Analysis

Ch.10 Exponential and Logarithmic Functions
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Univariate Calculus and Optimization limit of series

A sequence of real numbers is an assignment of a real number to

each natural number, usually written as {x1, x2, x3, . . . , xn, . . .}
or {xn}∞n=1.

ex: {1, 2, 3, 4, . . .} (F1.) ex:{1, 1
2
, 1

3
, 1

4
, . . .} (F2.)

ex: {1, 1
2
, 4, 1

8
, 16, . . .} (F3.) ex:{0,−1

2
, 2

3
,−3

4
, 4

5
, . . .} (F4.)

ex: {−1, 1,−1, 1,−1, . . .} (F5.) ex:{2
1
, 3

2
, 4

3
, 5

4
, . . .} (F6.)

ex: {3.1, 3.14, 3.141, 3.1415, . . .} (F7.)
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Univariate Calculus and Optimization limit of series

{1, 2, 3, 4, . . .}

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10 11

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 165 / 423



Univariate Calculus and Optimization limit of series

{1, 1
2
, 1

3
, 1

4
, . . .}

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11
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Univariate Calculus and Optimization limit of series

{1, 1
2
, 4, 1

8
, 16, . . .}

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11
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Univariate Calculus and Optimization limit of series

{0,−1
2
, 2

3
,−3

4
, 4

5
, . . .}

-1

-0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11
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Univariate Calculus and Optimization limit of series

{−1, 1,−1, 1,−1, . . .}

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8 9 10 11
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Univariate Calculus and Optimization limit of series

{2
1
, 3

2
, 4

3
, 5

4
, . . .}

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11
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Univariate Calculus and Optimization limit of series

{3.1, 3.14, 3.141, 3.1415, . . .}

3.075

3.1

3.125

3.15

0 1 2 3 4 5 6 7 8 9 10 11
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Univariate Calculus and Optimization limit of series

There are basically 3 kinds of sequences:

sequences in which the entries get closer and closer and stay close

to some limiting value

sequences in which the entries increase (or decrease) without

bound

sequences in which the entries jump back and forth on the

number line
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Univariate Calculus and Optimization limit of series

Let {xn}∞n=1 be a sequence of real numbers and let r be a real

number. We say that r is the limit of this sequence if for any

(small) positive number ε, there is a positive integer N such that

for all n ≥ N , xn is in the ε-interval about r, i.e.,

|xn − r| < ε,

then we say that the sequence converges to r and write

limxn = r or lim
n→∞

xn = r or xn → r.
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Univariate Calculus and Optimization limit of series

Note

1.The elements of the converging sequence need not be distinct

from each other or distinct from the limit.

2.The convergence need not be all from one side.

3.The convergence need not be monotonic: each element need

not be closer to the limit than all previous elements.

accumulation point (or cluster point)

If for any positive ε there are infinitely many elements of the sequence

in the interval Iε(r), then r is a cluster point of the sequence.
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Univariate Calculus and Optimization limit of series

A sequence can have at most one limit.

Proof: Suppose that a sequence {xn}∞n=1 has two limits: r1 and

r2. Take ε to be some number less than 1
2
|r1 − r2|, say

ε = 1
4
|r1 − r2|, so that Iε(r1) and Iε(r2) are disjoint intervals.

Since xn → r1, there is an N1 such that for n ≥ N1 all the xn are

in Iε(r1). Similarly, there is an N2 such that for n ≥ N2 all the xn

are in Iε(r2). Hence, for all n ≥ max{N1, N2}, xn are in both

Iε(r1) and Iε(r2).

But no point can be in both two disjoint intervals ⇒
Contradiction!
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Univariate Calculus and Optimization comparative statics and the concept of derivative

When we say x→ a, the variable x can approach the number a

either from values less than a (written x→ a−), or from values

greater than a (written x→ a+).

If, as x→ a from the left side, the function f(x) approaches a

finite number L1, written

lim
x→a−

f(x) = L1,

then we call L1 the left-hand limit of f(x) at x = a.

If, as x→ a from the right side, the function f(x) approaches a

finite number L2, written

lim
x→a+

f(x) = L2,

then we call L2 the right-hand limit of f(x) at x = a.
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Univariate Calculus and Optimization comparative statics and the concept of derivative

aa− δ

δ

2ε L1

L1 + ε

L1 − ε

x

y = f(x)

If for any ε > 0, however small, there exists some δ > 0, such that

|f(x)− L1| < ε, ∀ x satisfying a− δ < x < a, then the left-hand

limit exists and is equal to L1.

If for any ε > 0, however small, there exists some δ > 0, such that

|f(x)− L2| < ε, ∀ x satisfying a < x < a+ δ, then the

right-hand limit exists and is equal to L2

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 177 / 423



Univariate Calculus and Optimization comparative statics and the concept of derivative

Suppose that a function y = f(x) is defined on some open

interval including the point a. We say that the limit of f(x) at

x = a, that is, lim
x→a

f(x), exists if

(i) L1 = lim
x→a−

f(x) and L2 = lim
x→a+

f(x) exist

and

(ii) L1 = L2 = L.

Note that lim
x→a

f(x) (the limit of f(x) at x = a) is distinct from

f(a) (the function value of f(x) at x = a).
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Univariate Calculus and Optimization comparative statics and the concept of derivative

PSfrag replacements

y

x

L

a

PSfrag replacements

y

x

L

a

PSfrag replacements

y

x

L2

L1

a

PSfrag replacements

y

x
a
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Univariate Calculus and Optimization comparative statics and the concept of derivative

The Formal Definition of Limit

As x→ a, the limit of f(x) is the finite number L if, given any

positive ε (however small), there can be found a positive number

δ such that

|f(x)− L| < ε for 0 < |x− a| < δ
PSfrag replacements

x

y = f(x)

a

L
ε

δ
x
y
y2
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Univariate Calculus and Optimization comparative statics and the concept of derivative

Limit Theorems

If lim
x→a

f(x) = f0 and lim
x→a

g(x) = g0, then

(1) lim
x→a

[ f(x)± g(x) ] = f0 ± g0

(2) lim
x→a

f(x)g(x) = f0 g0 (3) lim
x→a

f(x)
g(x)

=
f0
g0

, (g0 6= 0)

ex: lim
x→a

x = a ex: lim
x→a

k = k

ex: lim
x→a

γx+ δ = lim
x→a

γ lim
x→a

x+ lim
x→a

δ = γa+ δ

ex: lim
x→a

xn = (lim
x→a

x)n = an
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Univariate Calculus and Optimization comparative statics and the concept of derivative

A function f(x), which is defined on an open interval including

the point x = a, is continuous at a if

(i) lim
x→a

f(x) exists and (ii) lim
x→a

f(x) = f(a).

A function f(x), which is defined on an open interval including

the point x = a, is continuous at that point if, given any positive

ε (however small), there can be found a positive number δ such

that |f(x)− f(a)| < ε, whenever |x− a| < δ.

A function that is not continuous is said to be discontinuous.
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Univariate Calculus and Optimization comparative statics and the concept of derivative

Suppose that f(x) and g(x) are continuous functions and that

c 6= 0 is a constant. The following are also continuous:

(i) cf(x) (ii) f(x) + c

(iii) f(x)± g(x) (iv) f(x)g(x)

(v) f(x)/g(x) for g(x) 6= 0

(vi) f−1(·), if it exists
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Univariate Calculus and Optimization comparative statics and the concept of derivative

Let f(x) be defined on the closed interval [a, b], x ∈ R and a < b.

We say that

(i) f(x) is continuous from the right at the point x = a if

lim
x→a+

f(x) exists, f(a) exists, and lim
x→a+

f(x) = f(a).

(ii) f(x) is continuous from the left at the point x = b if

lim
x→b−

f(x) exists, f(b) exists, and lim
x→b−

f(x) = f(b).

(iii) f(x) is continuous on the closed interval [a, b] if it is

(1) continuous at every point x strictly within the interval

(i.e., a < x < b), (2) continuous from the right at x = a and

(3) continuous from the left at x = b.
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Univariate Calculus and Optimization comparative statics and the concept of derivative

(Intermediate-value theorem)

Suppose that f(x) is a continuous function on the closed

interval [a, b] and that f(a) 6= f(b). Then, for any number y

between f(a) and f(b), there is some value of x, say x = c,

between a and b such that y = f(c).

PSfrag replacements

x

y

c

y = f(x)

b

a

f(b)

f(a)

y
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Univariate Calculus and Optimization comparative statics and the concept of derivative

ex: If the demand and supply functions are continuous and the

following two conditions are satisfied:

(i) at zero price,D(0) > S(0),

(ii) there exists some price, p̂ > 0, at which S(p̂) > D(p̂),

then there exists a positive equilibrium price in the market.

Hint: Let Z(p) = D(p)− S(p)
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Univariate Calculus and Optimization comparative statics and the concept of derivative

Given two points P = (x1, f(x1)) and Q = (x2, f(x2)) on the

graph of a function y = f(x), we define the secant line as the

straight line joining these two points and its slope is

mPQ = f(x2)−f(x1)
x2−x1 = ∆y

∆x

PSfrag replacements

f(x)

x
x1 x2

f(x1)

f(x2)

P

Q

∆x = x2 − x1

∆y = f(x2) − f(x1)
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Univariate Calculus and Optimization comparative statics and the concept of derivative

If the function y = f(x) is defined on some open interval

including the point P = (x1, f(x1)) and lim
∆x→0

mPQ exists, then

the line passing through the point P with slope equal to

lim
∆x→0

mPQ is the tangent line of the function y = f(x) at P .

PSfrag replacements

f(x)

x

P

Q2
Q1

y = f(x)

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 188 / 423



Univariate Calculus and Optimization comparative-static analysis of general-function Models

The derivative of a function y = f(x) at the point

P = (x1, f(x1)) is the slope of the tangent line at that point.

f ′(x1) = lim
∆x→0

mPQ = lim
x2→x1

f(x2)− f(x1)

x2 − x1

where ∆x = x2 − x1. We can also write this as

f ′(x1) = lim
∆x→0

mPQ = lim
∆x→0

f(x1 + ∆x)− f(x1)

∆x

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 189 / 423



Univariate Calculus and Optimization comparative-static analysis of general-function Models

PSfrag replacements

0
x

f(x)

1

1

f(x) =




x, x < 1

2− x, x ≥ 1

PSfrag replacements

0
x

f ′(x)

−1

1

1
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Univariate Calculus and Optimization comparative-static analysis of general-function Models

If f ′(x) exists (i.e., the function f(x) is differentiable) at the

point x = a, then the function f(x) must also be continuous at

this point.

Proof:

lim
x→a

[ f(x)− f(a) ] = lim
x→a

f(x)− f(a)

lim
x→a

[
f(x)− f(a)

x− a (x− a) ] = lim
x→a

[
f(x)− f(a)

x− a ] lim
x→a

(x− a)

= f ′(a)(lim
x→a

x− a) = 0
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Univariate Calculus and Optimization comparative-static analysis of general-function Models

The smoothness of a primitive function, f(x), can be linked to

the continuity of its derivative function, f ′(x). That is, if a

certain function is smooth everywhere on the domain, it is

referred to as a continuously differentiable function.

A function f(x) defined on the domain x ∈ [a, b] is differentiable

on [a, b] if

(1) the right-hand derivative for f(x) exists at x = a,

(2) the left-hand derivative exists at x = b,

(3) f(x) is differentiable at every point in the open set (a, b).
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

Rules of Differentiation

f(x) = k (a constant) ⇒ f ′(x) = 0

f(x) = xn ⇒ f ′(x) = nxn−1

d
dx

[ f(x)± g(x) ] = f ′(x)± g′(x)

ex: f(x) = 4x4 − x3 + 17x2 + 3x− 1

f ′(x) = 16x3 − 3x2 + 34x+ 3

f ′′(x) = 48x2 − 6x+ 34

f ′′′(x) = 96x− 6 f (4)(x) = 96 f (5)(x) = 0
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

d
dx

[ f(x)g(x) ] = f ′(x)g(x) + f(x)g′(x)

ex: d
dx

[(2x+ 3)(3x2)] = (2)(3x2) + (2x+ 3)(6x) = 18x2 + 18x

d
dx

[ f(x)g(x)h(x) ] =

f ′(x)g(x)h(x) + f(x)g′(x)h(x) + f(x)g(x)h′(x)

d
dx

[
f(x)
g(x)

] =
f ′(x)g(x)− f(x)g′(x)

[ g(x) ]2

ex: d
dx

(
2x− 3
x+ 1

)
=

(2)(x+ 1)− (2x− 3)(1)
(x+ 1)2 = 5

(x+ 1)2
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

PSfrag replacements

MR(q)

AR(q) = p(q)

q

p

u+ v
u− v

x
y

ex:

AR(q) = P (q)

⇒ TR(q) = AR(q)q = P (q)q

⇒ MR(q) = d
dq
TR(q)

= P ′(q)q + P (q)

⇒ MR(q)−AR(q) = P ′(q)q < 0
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

PSfrag replacements

MC(q)

AC(q)

q

−v = (−1,−2)

u+ v

u− v

x
y

ex:

AC(q) =
TC(q)
q

⇒ d
dq
AC(q) = d

dq
[
TC(q)
q ]

=
[
d

dq
TC(q) ]q − TC(q)

q2

= 1
q [ MC(q)−AC(q) ]
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

The Chain Rule

If y = f(u) and u = g(x) so that y = f(g(x)) = h(x), then

h′(x) = f ′(u)g′(x) or
dy

dx
=

(
dy

du

)(
du

dx

)

ex:

TR = TR(q) and q = q(L) so that TR = f(L)

⇒MRP (L) = d
dL

f(L) =

(
dTR(q)
dq

)(
dq(L)
dL

)

= MR(q)MP (L)
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

The Derivative of the Inverse of a Function

If y = f(x) has the inverse function x = f−1(y) = g(y), then

dx

dy
=

1

dy/dx
or g′(y) =

1

f ′(x)

ex:

TC(L) = wL+ C0 and q = q(L) (or L = L(q))

⇒ TC(q) = wL(q) + C0

⇒ MC(q) = d
dq
TC(q) = w

dL(q)
dq

= w
dq(L)/dL

= w
MP (L)
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

For a function y = f(x), which is assumed to be nth-order

continuously differentiable,

(i) the first derivative function (the slope of f):

f ′(x) =
dy

dx

(ii) the second derivative function (the rate of change of the slope

of f):

f ′′(x) =
d

dx
[ f ′(x) ] =

d

dx
[
dy

dx
] =

d2y

dx2

(iii) the third derivative function:

f ′′′(x) =
d

dx
[ f ′′(x) ] =

d2

dx2 [ f ′(x) ] =
d3y

dx3
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

f ′ > 0 : the value of f tends to increase

f ′ = 0 : the value of f tends to stay constant

f ′ < 0 : the value of f tends to decrease

PSfrag replacements

y

x

x̂1
x̂ = x∗

x∗
y = f(x)

−4
f(a)

y

PSfrag replacements

y

x

x̂1
x̂ = x∗

x∗
y = f(x)

−4
f(a)

y

PSfrag replacements

y

x

x̂1
x̂ = x∗

x∗
y = f(x)

−4
f(a)

y
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

f ′′ > 0 : the slope of the curve tends to increase

f ′′ < 0 : the slope of the curve tends to decrease

PSfrag replacements y

x

x̂1
x̂ = x∗

x∗
y = f(x)

−4
f(a)

y

PSfrag replacements y

x

x̂1
x̂ = x∗

x∗
y = f(x)

−4
f(a)

y
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

Objective function =⇒ dependent variable

ex: Utility Maximization

Profit Maximization

Cost Minimization

Choice variable =⇒ independent variable

ex: the quantities of goods

the quantities of products

the quantities of inputs
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

At a global (absolute) maximum x∗,

f(x∗) ≥ f(x) ∀ x

whereas at a local (relative) maximum x̂,

f(x̂) ≥ f(x), ∀ x ∈ (x̂− ε, x̂+ ε)

where ε (perhaps very small) is positive.

PSfrag replacements

y

x

x̂1

x̂ = x∗

x∗ y = f(x)

−4
f(a)

y

PSfrag replacements

y

x
x̂1 x̂2 x∗

y = f(x)

−4
f(a)

y
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

If the differentiable function f takes an (local) extreme value

(maximum or minimum) at a point x∗, then

f ′(x∗) = 0 [first-order condition].

Note that the first-order condition, f ′(x∗) = 0, is only necessary

but not sufficient for x∗ to yield an extremum value.

relative  extremum zero  slope

1. maximum

2. minimum

3. inflection  point

X
X
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

PSfrag replacements

y

x

x̂1
x̂ = x∗

x∗
y = f(x)

−4
f(a)

y

PSfrag replacements

y

x

x̂1
x̂ = x∗

x∗
y = f(x)

−4
f(a)

y

PSfrag replacements

y

x

x̂1
x̂ = x∗

x∗
y = f(x)

−4
f(a)

y

If f ′(x∗) = 0, then x∗ : critical value

f(x∗) : stationary value

(x∗, f(x∗)) : stationary point
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

A twice differentiable function f(x) is convex (concave) if

f ′′(x) ≥ 0 (f ′′(x) ≤ 0) at all points on its domain.

A twice differentiable function f(x) is strictly convex (strictly

concave) if f ′′(x) > 0 (f ′′(x) < 0).

However, f ′′(x) might be zero at a stationary point for a strictly

convex (strictly concave) function.

ex: y = f(x) = x4 when considering x = 0.

Hence, f ′′(x∗) > (<) 0 with f ′(x∗) = 0 is sufficient but not

necessary for f(x∗) to be a relative minimum (maximum). It is

necessary that f ′′(x∗) ≥ (≤) 0 with f ′(x∗) = 0 .
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

ex: Let the R(Q) and C(Q) functions be

R(Q) = 1200Q− 2Q2

C(Q) = Q3 − 61.25Q2 + 1528.5Q+ 2000

Then the profit function is

π(Q) = −Q3 + 59.25Q2 − 328.5Q− 2000

which has two critical values, Q = 3 and Q = 36.5, because
dπ
dQ

= −3Q2 + 118.5Q− 328.5 = −3(Q− 3)(Q− 36.5).

But since the second derivative is

d2π
dQ2 = −6Q+ 118.5

{
> 0 when Q = 3

< 0 when Q = 36.5

the profit-maximizing output is Q∗ = 36.5.
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

Maclaurin Series Expansion of a Polynomial Function

f(x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n ⇒ f(0) = a0

f ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 ⇒ f ′(0) = a1

f ′′(x) = 2a2 + (3)(2)a3x+ · · ·+ n(n− 1)anx
n−2 ⇒ f ′′(0) = 2a2

...

f (n)(x) = n(n− 1)(n− 2) · · · (3)(2)(1)an ⇒ f (n)(0) = n! an

=⇒ f(x) =
f(0)
0!

+
f ′(0)

1!
x+

f ′′(0)
2!

x2 + · · ·+ f (n)(0)
n!

xn
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

Taylor Series Expansion (around x = x0)

Let x = x0 + δ ⇒ f(x) = f(x0 + δ) ≡ g(δ)

Hence, f ′(x0 + δ) = g′(δ) and f (n)(x0 + δ) = g(n)(δ)

f(x) = g(δ) =
g(0)
0!

+
g′(0)

1!
δ +

g′′(0)
2!

δ2 + · · ·+ g(n)(0)
n!

δn

=
f(x0)

0!
+
f ′(x0)

1!
(x−x0)+

f ′′(x0)
2!

(x−x0)2 + · · ·+ f (n)(x0)
n!

(x−x0)n

=
n∑
k=0

[
f (k)(x0)
k!

(x− x0)k
]
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

Taylor’s Theorem

Given an arbitrary function f(x), if we know the values f(x0),

f ′(x0), f ′′(x0), · · · , etc., then f(x) can be expanded around x0 as

f(x) =

[
f(x0)

0!
+
f ′(x0)

1!
(x− x0) + · · ·+ f (n)(x0)

n!
(x− x0)n

]
+Rn+1

= Pn +Rn+1

where Rn+1 =
f (n+1)(p)
(n+ 1)!

(x− x0)n+1 and p ∈ (x, x0).

If it happens that

Rn+1 → 0 as n→∞ so that Pn → f(x) as n→∞
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

A function f(x) attains a relative maximum (minimum) value at

x0 if f(x)− f(x0) is negative (positive) for values of x in the

immediate neighborhood of x0.

Because of the continuity of the nth derivative, f (n)(p) will have

the same sign as f (n)(x0) does since p is very close to x0.

ex: f ′(x0) 6= 0

f(x)− f(x0) =
f ′(p)

1!
(x− x0) = f ′(p)(x− x0)

⇒ f(x0) cannot be a relative extremum.
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

ex: f ′(x0) = 0, f ′′(x0) 6= 0

f(x)− f(x0) =
f ′(x0)

1!
(x− x0) +

f ′′(p)
2!

(x− x0)2

= 1
2f
′′(p)(x− x0)2

⇒ f(x0) is a relative maximum if f ′′(x0) < 0 with f ′(x0) = 0.

ex: f ′(x0) = f ′′(x0) = 0, f ′′′(x0) 6= 0

f(x)− f(x0) =
f ′(x0)

1!
(x− x0) +

f ′′(x0)
2!

(x− x0)2 +
f ′′′(p)

3!
(x− x0)3

= 1
6f
′′′(p)(x− x0)3

⇒ (x0, f(x0)) is an inflection point.
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

Nth-Derivative Test

If f ′(x0) = 0 and the first nonzero derivative value at x0

encountered in successive derivative is Nth, i.e., f (N)(x0) 6= 0,

then the stationary value f(x0) will be

1. a relative maximum if N is even and f (N)(x0) < 0.

2. a relative minimum if N is even and f (N)(x0) > 0.

3. an inflection point if N is odd.

ex: y = f(x) = x3

ex: y = f(x) = (x− 2)4 + 3
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Univariate Calculus and Optimization exponential and logarithmic functions

Exponential Functions:

y = f(x) = ax, a > 0, a 6= 1.

PSfrag replacements

x

y

y = 2xy = (12)
x

1
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Univariate Calculus and Optimization exponential and logarithmic functions

Q: What kind of number a can, as a base of the exponential

function f(x) = ax,possess the property that f(x) = f ′(x) ?

⇒ f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

ax+h − ax
h

= ax lim
h→0

ah − 1
h

? = ax = f(x)

⇒ lim
h→0

ah − 1
h

= 1
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Univariate Calculus and Optimization exponential and logarithmic functions

⇒ Let E(m) = (1 + 1
m)m, then

E(1) = 2,

E(2) = 2.25,

E(3) = 2.37037 · · · ,
E(4) = 2.4414 · · · ,
E(5) = 2.48832,

...

⇒ e ≡ lim
m→∞

E(m) = lim
m→∞

(1 + 1
m)m + 2.71828

⇒ d
dx
ex = ex
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Univariate Calculus and Optimization exponential and logarithmic functions

f(x) = ex

⇒ f(x) = f ′(x) = f ′′(x) = · · · = f (n)(x) = ex

⇒ f(0) = f ′(0) = f ′′(0) = · · · = f (n)(0) = 1

⇒ ex = f(0) +
f ′(0)

1!
x+

f ′′(0)
2!

x2 +
f ′′′(0)

3!
x3 + · · ·

= 1 + x+ 1
2!
x2 + 1

3!
x3 + · · ·

⇒ e = 1 + 1 + 1
2!

+ 1
3!

+ · · · + 2.71828
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Univariate Calculus and Optimization exponential and logarithmic functions

Economic Interpretation

(1) As the year-end value to which a principle of $1 will grow if

interest at the rate of 100% per annum is compounded

continuously.

⇒ V (1) = (1 + 1
1)1,

V (2) = (1 + 1
2)2,

V (3) = (1 + 1
3)3,

...

⇒ lim
m→∞

V (m) = lim
m→∞

(1 + 1
m)m = e

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 218 / 423



Univariate Calculus and Optimization exponential and logarithmic functions

(2) As the t year-end value to which a principle of $A will grow if

interest at the rate of r per annum is compounded continuously.

⇒ V (1) = A(1 + r)t,

V (2) = A(1 + r
2)2t,

V (3) = A(1 + r
3)3t,

...

⇒ lim
m→∞

V (m) = lim
m→∞

A(1 + r
m)mt

= lim
(m/r)→∞

A(1 + 1
(m/r)

)(m/r)rt

= Aert
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Univariate Calculus and Optimization exponential and logarithmic functions

(3) r as the instantaneous rate of growth of Aert.

Let V = Aert, then dV
dt

= Arert = rV

⇒ γ
V

=
dV/dt
V = r.

(4) Discounting and the present value.

V = Aert ⇒ A = V e−rt
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Univariate Calculus and Optimization exponential and logarithmic functions

Logarithms:

y = f(x) = loga x, a > 0, a 6= 1, x > 0

PSfrag replacements
x

y

y = log2 x

y = log( 12 ) x

1
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Univariate Calculus and Optimization exponential and logarithmic functions

Rules

1. loga(uv) = loga u+ loga v ex: log2 6 = log2 2 + log2 3

2. loga(
u
v ) = loga u− loga v ex: log2 5 = log2 10− log2 2

3. loga u
n = n loga u ex: log10 0.001 = log10 10−3 = −3

4. logb u = (logb a)(loga u) ex: (log4 3)(log3 64) = log4 43 = 3

5. loga u = (logu a)−1 ex: log3 2 = 1
log2 3

6. logak u
n = n

k
loga u ex: log4 8 = log22 23 = 3

2
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Univariate Calculus and Optimization exponential and logarithmic functions

Define loge x = lnx as the natural logarithm

and log10 x = log x as the common logarithm.

d
dx

lnx = 1
x

proof:

Let f(x) = ln x and m = x
h

⇒ f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

ln(
x+ h

x
)

h

= lim
m→∞

ln(1 +
1

m
)

(
x

m
)

= 1
x lim
m→∞

ln(1 + 1
m)m

= 1
x ln( lim

m→∞
(1 + 1

m)m) = 1
x
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Univariate Calculus and Optimization exponential and logarithmic functions

ex: y = e3t

⇒ y′ = d
dt
e3t = ( d

d(3t)
e3t)(

d(3t)
dt

) = 3e3t

ex: y = ln t5

⇒ y′ = ( d
d(t5)

ln t5)( d
dt
t5) = 1

t5
(5t4) = 5

t

ex: y = t3 ln t2

⇒ y′ = (3t2)(ln t2) + (t3)(2
t ) = 6t2 ln t+ 2t2
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Univariate Calculus and Optimization exponential and logarithmic functions

b = eln b or b = aloga b

d
dx
bx = bx ln b

d
dx

logb x = 1
x ln b

proof 1:

d
dx
bx = d

dx
(eln b)x = d

dx
e(ln b)x = (ln b)e(ln b)x = bx ln b

proof 2:

d
dx

logb x = d
dx

( lnx
ln b

) = 1
x ln b
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Univariate Calculus and Optimization exponential and logarithmic functions

ex: y = 121−t

⇒ y′ = (−1)121−t ln 12

ex: y = x2

(x+ 3)(2x+ 1)

⇒ ln y = lnx2 − ln(x+ 3)− ln(2x+ 1)

⇒ (1
y )y′ = 2

x − 1
x+ 3 −

2
2x+ 1

⇒ y′ = x2

(x+ 3)(2x+ 1)

(
2
x − 1

x+ 3 −
2

2x+ 1

)

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 226 / 423



Univariate Calculus and Optimization exponential and logarithmic functions

ex: y = 4t ⇒ ln y = ln 4t = t ln 4

⇒ d
dt

ln y = 1
y (
dy
dt

) ≡ γy = ln 4

ex: y = uv ⇒ ln y = lnu+ ln v ⇒ γy = γu + γv

y = u
v ⇒ ln y = lnu− ln v ⇒ γy = γu − γv

y = u+ v ⇒ ln y = ln(u+ v)

⇒ γy = 1
u+ v (du

dt
+ dv
dt

) = u
u+ vγu + v

u+ vγv
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Multivariate Calculus and Optimization

Multivariate Calculus

and Optimization
refer to textbook

Ch.11 The Case of More than One Choice Variable
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Multivariate Calculus and Optimization partial differentiation

Let y = f(x1, x2, · · · , xn), where xi are mutually independent.

The partial derivative of y with respect to the variable xi is

fi ≡ ∂y
∂xi

= lim
∆xi→0

f(x1, . . . , xi + ∆xi, . . . , xn)− f(x1, . . . , xi, . . . , xn)
∆xi

ex: f(x1, x2) = 3x2
1 + x1x2 + 4x2

2

⇒ f1(x1, x2) = 6x1 + x2 and f2(x1, x2) = x1 + 8x2

ex: f(x, y) =
2x− 3y
x+ y

⇒ fx(x, y) =
2(x+ y)− (2x− 3y)

(x+ y)2 =
5y

(x+ y)2

fy(x, y) =
(−3)(x+ y)− (2x− 3y)

(x+ y)2 = −5x
(x+ y)2
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Multivariate Calculus and Optimization applications to comparative-static analysis

ex: QD = a− bP (a, b > 0)

QS = −c+ dP (c, d > 0)

⇒ P ∗ = a+ c
b+ d

, Q∗ = ad− bc
b+ d

⇒ ∂P ∗

∂a
= ?, ∂P ∗

∂b
= ?, ∂P ∗

∂c
= ?, ∂P ∗

∂d
= ?

∂Q∗

∂a
= ?,

∂Q∗

∂b
= ?,

∂Q∗

∂c
= ?,

∂Q∗

∂d
= ?
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Multivariate Calculus and Optimization differentials and derivatives

dy = (
dy
dx

)dx

dy: the differential of y

dx: the differential of x

dy/dx: the derivative of y = f(x)

⇒ (dy)
(dx)

= (
dy
dx

) ≡ f ′(x)

ex: εD ≡ dQ/Q
dP/P

= (
dQ
dP

)(PQ)

= 1
(dP/dQ)

(PQ) = 1
m tan θPSfrag replacements

Q

P

D

slope= m
θ

1
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Multivariate Calculus and Optimization total differentials

Total Differentials

y = f(x1, x2) ⇒ dy = (
∂y
∂x1

)dx1 + (
∂y
∂x2

)dx2

⇒ ∂y
∂x1

=
dy
dx1

∣∣∣
dx2=0

ex: U = U(x1, x2) = U0 and MU1 = ∂U
∂x1

, MU2 = ∂U
∂x2

⇒ dU = MU1dx1 +MU2dx2 = 0

⇒ dx2
dx1

= −MU1
MU2

= −MRS12

PSfrag replacements

x1

x2

U = U0

1
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Multivariate Calculus and Optimization total differentials

ex: M = p1x1 + p2x2 + · · ·+ pnxn

⇒ dM = (p1dx1 + x1dp1) + (p2dx2 + x2dp2) + · · ·+ (pndxn + xndpn)

If dp1 = dp2 = · · · = dpn = 0, then

dM = p1dx1 + p2dx2 + · · ·+ pndxn

(i) if dM = 0, then dx2
dx1

= −p1
p2

(ii) if dM 6= 0, then

dM
M = (

p1x1

M )(dx1
x1

) + (
p2x2

M )(dx2
x2

) + · · ·+ (
pnxn
M )(dxnxn )

⇒ S1η1 + S2η2 + · · ·+ Snηn = 1
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Multivariate Calculus and Optimization total differentials

ex: y = 5x2
1 + 3x2

⇒ dy = 10x1 dx1 + 3 dx2

ex: y = 3x2
1 + x1x

2
2

⇒ dy = (6x1 + x2
2) dx1 + 2x1x2 dx2

ex: y = x1 + x2

2x2
1

⇒ dy =

[
2x2

1 − (x1 + x2)(4x1)
4x4

1

]
dx1 + ( 1

2x2
1

) dx2
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Multivariate Calculus and Optimization total derivatives

Total Derivatives

Case 1:

y = f(x,w)

= f(g(w), w)

PSfrag replacements

y w

x

f

f g

1

⇒ dy = fx dx+ fw dw = fx gw dw + fw dw

⇒ dy
dw

= (
∂y
∂x

)( dx
dw

) + (
∂y
∂w

)
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Multivariate Calculus and Optimization total derivatives

Case 2:

y = f(x1, x2, w)

= f(g(w), h(w), w)

PSfrag replacements

y w

x1

x2

f

f g

f h

⇒ dy = f1 dx1 + f2 dx2 + fw dw

= f1 gw dw + f2 hw dw + fw dw

⇒ dy
dw

= (
∂y
∂x1

)(dx1
dw

) + (
∂y
∂x2

)(dx2
dw

) + (
∂y
∂w

)
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Multivariate Calculus and Optimization total derivatives

Case 3:

y = f(x1, x2, u, v)

= f(g(u, v), h(u, v), u, v)

PSfrag replacements

y
x1

x2

u

vf

f

f

f

g

g

h

h

h

⇒ dy = f1 dx1 + f2 dx2 + fu du+ fv dv

= f1 (gu du+ gv dv) + f2 (hu du+ hv dv) + fu du+ fv dv

= (f1 gu + f2 hu + fu) du+ (f1 gv + f2 hv + fv) dv

= (
§y
§u) du+ (

§y
§v ) dv

where §y§u ≡
dy
du

∣∣∣
dv=0

= (
∂y
∂x1

)(∂x1
∂u

) + (
∂y
∂x2

)(∂x2
∂u

) + (
∂y
∂u

)

is the partial total derivative of y with respect to u.
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Multivariate Calculus and Optimization the differential version of optimization conditions

The Differential Version of Optimization Conditions

y = f(x)

⇒ dy = f ′(x) dx = 0

if and only if f ′(x) = 0 [ 1st-order condition ]

⇒ d2y = d(dy) = d(f ′(x) dx)

= (df ′(x)) dx = (f ′′(x) dx) dx

= f ′′(x)(dx)2 = f ′′(x)dx2 > (<)0

if and only if f ′′(x) > (<)0 [ 2nd-order condition ]
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Multivariate Calculus and Optimization the differential version of optimization conditions

Two Variables Case

y = f(x1, x2)

⇒ dy = f1 dx1 + f2 dx2 = 0 for arbitrary values of dx1 and dx2

iff f1 = f2 = 0 [ 1st-order condition ]

PSfrag replacements

y

x1
x2

u
v
f
g
h
h

PSfrag replacements

y

x1 x2

u
v
f
g
h
h

PSfrag replacements

y

x1
x2

u
v
f
g
h
h

y = −x1
2 − x2

2 y = x1
2 − x2

2 y = −x1
3 − x2

3
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Multivariate Calculus and Optimization the differential version of optimization conditions

ex: y = f(x1, x2) = x1
3 + 5x1x2 − x2

2

f1(x1, x2) = 3x1
2 + 5x2

set
= 0

f2(x1, x2) = 5x1 − 2x2
set
= 0

⇒ (x1, x2) = (0, 0) or (−25/6,−125/12)

2nd-Order Partial Derivatives

Given y = f(x1, x2) is a twice differentiable function, then

f11 ≡ ∂
∂x1

f1(x1, x2) = ∂
∂x1

(
∂y
∂x1

)

f12 ≡ ∂
∂x2

f1(x1, x2) = ∂
∂x2

(
∂y
∂x1

)
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Multivariate Calculus and Optimization the differential version of optimization conditions

2nd-Order Condition

d2y ≡ d(dy) = ( ∂
∂x1

dy)dx1 + ( ∂
∂x2

dy)dx2

= [ ∂
∂x1

(f1 dx1 + f2 dx2) ]dx1 + [ ∂
∂x2

(f1 dx1 + f2 dx2) ]dx2

= (f11 dx1 + f21 dx2)dx1 + (f12 dx1 + f22 dx2)dx2

= f11(dx1)2 + f21(dx2)(dx1) + f12(dx1)(dx2) + f22(dx2)2

=
[
dx1 dx2

] [ f11 f12

f21 f22

][
dx1

dx2

]
(examples)

= f11 dx1
2 + 2f12 dx1 dx2 + f22 dx2

2 [ Young’s Theorem ]
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Multivariate Calculus and Optimization the differential version of optimization conditions

ex: q = 5u2 + 3uv + 2v2

⇒ q =
[
u v

] [ 5 3/2

3/2 2

][
u

v

]

ex: z = −2x2 + 2xy − y2

⇒ z =
[
x y

] [ −2 1

1 −1

][
x

y

]
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Multivariate Calculus and Optimization the differential version of optimization conditions

Young’s Theorem

For a function

y = f(x1, x2, . . . , xn)

with continuous first- and second-order partial derivatives, the

order of differentiation in computing the cross-partials is

irrelevant. That is, fij = fji for any pair i, j.

fij ≡ ∂
∂xj

(
∂f
∂xi

)
= ∂
∂xi

(
∂f
∂xj

)
≡ fji

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 243 / 423



Multivariate Calculus and Optimization the differential version of optimization conditions

d2y = f11 dx1
2 + 2f12 dx1 dx2 + f22 dx2

2

= f11(dx1 +
f12

f11
dx2)2 +

f11f22 − f12
2

f11
(dx2)2

(1) d2y > 0 iff f11 > 0, f22 > 0, f11 f22 − f12
2 > 0

(2) d2y < 0 iff f11 < 0, f22 < 0, f11 f22 − f12
2 > 0

(3) If f11 f22 − f12
2 < 0, then the point is a saddle point or an

inflection point.

(examples)
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Multivariate Calculus and Optimization the differential version of optimization conditions

If the function y = f(x1, x2) defined on R2 is twice continuously

differentiable and

d2y = f11 dx1
2 + 2f12 dx1 dx2 + f22 dx2

2 > (<) 0

whenever at least one of dx1 or dx2 is nonzero, then

y = f(x1, x2) is a strictly convex (strictly concave) function.

If the function y = f(x1, x2) defined on R2 is twice continuously

differentiable, then it is convex (concave) if and only if

d2y = f11 dx1
2 + 2f12 dx1 dx2 + f22 dx2

2 ≥ (≤) 0
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Multivariate Calculus and Optimization the differential version of optimization conditions

Three Variables Case

y = f(x1, x2, x3)

(1) dy = f1 dx1 + f2 dx2 + f3 dx3

⇒ dy = 0 iff f1 = f2 = f3 = 0 [ 1st-order condition ]

(2) d2y = (f11 dx1 + f12 dx2 + f13 dx3)dx1

+(f21 dx1 + f22 dx2 + f23 dx3)dx2

+(f31 dx1 + f32 dx2 + f33 dx3)dx3

=
[
dx1 dx2 dx3

]


f11 f12 f13

f21 f22 f23

f31 f32 f33






dx1

dx2

dx3



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Multivariate Calculus and Optimization the differential version of optimization conditions

Let H be the Hessian Matrix associated with a twice

continuously differentiable function y = f(x), x ∈ Rn.

H =




f11 f12 · · · f1n

f21 f22 · · · f2n

...
...

. . .
...

fn1 fn2 · · · fnn




Denote |H1|, |H2|, · · · , |Hn| as the leading principal minors:

|H1| = |f11|, |H2| =
∣∣∣∣∣
f11 f12

f21 f22

∣∣∣∣∣ , |H3| =

∣∣∣∣∣∣∣

f11 f12 f13

f21 f22 f23

f31 f32 f33

∣∣∣∣∣∣∣
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Multivariate Calculus and Optimization the differential version of optimization conditions

d2y =
3∑
i=1

3∑
j=1

(fij dxi dxj)

= f11(dx1 +
f12
f11

dx2 +
f13
f11

dx3)2

+(f22 − f12
2

f11
)(dx2)2 + (f33 − f13

2

f11
)(dx3)2

+2(
f11f23 − f12f13

f11
)(dx2)(dx3)

= |H1|(dx1 +
f12
f11

dx2 +
f13
f11

dx3)2

+
|H2|
|H1|(dx2 +

f11f23 − f12f13

f11f22 − f2
12

dx3)2 +
|H3|
|H2|(dx3)2

d2y > 0 iff |H1| > 0, |H2| > 0, |H3| > 0

d2y < 0 iff |H1| < 0, |H2| > 0, |H3| < 0
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Multivariate Calculus and Optimization the differential version of optimization conditions

n-Variables Case

(1) d2y > 0 iff |H1| > 0, |H2| > 0, |H3| > 0, · · · , |Hn| > 0

+ + + · · · +
and H is said to be a positive definite matrix.

(2) d2y < 0 iff |H1| < 0, |H2| > 0, |H3| < 0, |H4| > 0, · · ·
− + − + · · ·

and H is said to be a negative definite matrix.

(3) d2y ≥ 0 iff |H1| ≥ 0, |H2| ≥ 0, |H3| ≥ 0, · · · , |Hn| ≥ 0

and H is said to be a positive semidefinite matrix.

(4) d2y ≤ 0 iff |H1| ≤ 0, |H2| ≥ 0, |H3| ≤ 0, |H4| ≥ 0, · · ·
and H is said to be a negative semidefinite matrix.
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Multivariate Calculus and Optimization the differential version of optimization conditions

ex: y = f(x1, x2, x3) = 3x1
2− 2x1x2 + 4x1x3 + 5x2

2 + 4x3
2− 2x2x3

⇒ f1(x1, x2, x3) = 6x1 − 2x2 + 4x3

f2(x1, x2, x3) = −2x1 + 10x2 − 2x3 ⇒ H =




6 −2 4

−2 10 −2

4 −2 8




f3(x1, x2, x3) = 4x1 + 8x3 − 2x2

⇒ |H1| = 6 > 0, |H2| =
∣∣∣∣∣

6 −2

−2 10

∣∣∣∣∣ = 56 > 0,

|H3| =

∣∣∣∣∣∣∣

6 −2 4

−2 10 −2

4 −2 8

∣∣∣∣∣∣∣
= 296 > 0,

⇒ H is a positive definite matrix.
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Multivariate Calculus and Optimization the differential version of optimization conditions

ex: y = f(x1, x2, x3) = 2x1
2 + 3x2

2 − x3
2 + 6x1x2 − 8x1x3 − 2x2x3

⇒ H =




4 6 −8

6 6 −2

−8 −2 −2




⇒ |H1| = 4 > 0, |H2| =
∣∣∣∣∣

4 6

6 6

∣∣∣∣∣ = −12 < 0,

⇒ H is neither positive nor negative definite.
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Multivariate Calculus and Optimization the differential version of optimization conditions

ex: Suppose that a monopolistic firm sells a single product in three

separate markets and the demands facing this firm are as follows:

P1 = 63− 4Q1, P2 = 105− 5Q2, P3 = 75− 6Q3

and that the total-cost function is

C = 20 + 15Q.

Please solve the profit maximization problem for this firm.

Note that Ri = PiQi, hence

d

dQi
Ri = Pi +

(
dPi
dQi

)
Qi

= Pi

[
1 +

(
dQi
dPi

Pi
Qi

)−1
]

= Pi

(
1− 1

|εi|

)
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Multivariate Calculus and Optimization the differential version of optimization conditions

π = R1 +R2 +R3 − C
= (63− 4Q1)Q1 + (105− 5Q2)Q2 + (75− 6Q3)Q3

−[20 + 15(Q1 +Q2 +Q3)]

= −20 + 48Q1 − 4Q1
2 + 90Q2 − 5Q2

2 + 60Q3 − 6Q3
2

⇒ π1 = 48− 8Q1
set
= 0

π2 = 90− 10Q2
set
= 0 ⇒ (Q1, Q2, Q3) = (6, 9, 5)

π3 = 60− 12Q3
set
= 0

⇒ H =



−8 0 0

0 −10 0

0 0 −12


 is negative definite.

Thus, the equilibrium profit is a maximum.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

Eigenvalue and Eigenvector

Given an n× n matrix A, we can find a scalar λ and an n× 1

vector x 6= 0n×1 such that

Ax = λx,

where λ is an eigenvalue (characteristic root) of A

and x is an eigenvector (characteristic vector) of A.

Ax = λx ⇒ (A− λI)x = 0n×1

If x is required not to be a trivial solution (i.e., x 6= 0),

⇒ |A− λI| = 0 i.e., (A− λI) is singular.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

ex: A =

[
4 1

2 3

]

⇒ |A− λI| =
∣∣∣∣∣

4− λ 1

2 3− λ

∣∣∣∣∣ = λ2 − 7λ+ 10 = 0

⇒ λ1 = 2 and λ2 = 5

⇒
[

4− 2 1

2 3− 2

]
x1 =

[
2 1

2 1

][
a1

b1

]
= 0

and

[
4− 5 1

2 3− 5

]
x2 =

[
−1 1

2 −2

][
a2

b2

]
= 0

⇒ By normalization ( Let ‖x‖ =
√
xTx =

√
a2 + b2 = 1 )

x1 =

[
1/
√

5

−2/
√

5

]
and x2 =

[
1/
√

2

1/
√

2

]
ex:

[
2 4

1 2

]
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Multivariate Calculus and Optimization eigenvalue and eigenvector

ex: A =




2 1 1

1 2 1

1 1 2


 ⇒ |A− λI| =

∣∣∣∣∣∣∣

2− λ 1 1

1 2− λ 1

1 1 2− λ

∣∣∣∣∣∣∣
= −λ3 + 6λ2 − 9λ+ 4 = 0

⇒ λ1 = 1, λ2 = 1, λ3 = 4

(i)




2− 1 1 1

1 2− 1 1

1 1 2− 1


x1 =




1 1 1

1 1 1

1 1 1






a1

b1

c1


 = 0

⇒ a1 + b1 + c1 = 0 and (by normalization) a1
2 + b1

2 + c1
2 = 1

⇒ x1 =




1/
√

2

−1/
√

2

0


 and x2 =




1/
√

6

1/
√

6

−2/
√

6



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Multivariate Calculus and Optimization eigenvalue and eigenvector

(ii)




2− 4 1 1

1 2− 4 1

1 1 2− 4


x3 =



−2 1 1

1 −2 1

1 1 −2






a3

b3

c3


 = 0

⇒ a3 = b3 = c3 and (by normalization) a3
2 + b3

2 + c3
2 = 1

⇒ x3 =




1/
√

3

1/
√

3

1/
√

3




ex:




1 −1 −1

1 −1 0

1 0 −1



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Multivariate Calculus and Optimization eigenvalue and eigenvector

|A− λI|

=

∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

. . .
...

an1 an2 · · · ann − λ

∣∣∣∣∣∣∣∣∣∣
(is an nth-degree polynomial in λ)

= (−1)n[λn − α1λ
n−1 + α2λ

n−2 + · · ·+ (−1)n−1αn−1λ+ (−1)nαn]

(and thus has n solutions λ1, λ2, · · · , λn)

= (−1)n(λ− λ1)(λ− λ2) · · · (λ− λn)

Note that α1 denotes the sum and αn the product of all

eigenvalues.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

If λ = 0, then |A| = αn = λ1λ2 · · ·λn
(1) The determinant of A equals the product of all its eigenvalues.

(2) A is nonsingular if and only if no eigenvalue equals zero.

α1 = λ1 + λ2 + · · ·+ λn

= a11 + a22 + · · ·+ ann ≡ trace(A)

(3) The sum of all the eigenvalues of A equals the trace of A.

ex:

[
4 1

2 3

]
ex:




2 1 1

1 2 1

1 1 2




⇒ λ1 = 2 and λ2 = 5 ⇒ λ1 = 1, λ2 = 1, λ3 = 4
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Multivariate Calculus and Optimization eigenvalue and eigenvector

|A− λI| = |(A− λI)T | = |AT − λI|
(4) AT has the same eigenvalues as A’s.

|A− λI| = k−n|k(A− λI)| = k−n|kA− (kλ)I|
(5) The eigenvalues of kA equals k-folds the eigenvalues of A.

If A−1 exists, then |A− λI| = |A− λAA−1|
= |(−λA)(−1

λ
I + A−1)|

= (−λ)n|A||A−1 − 1
λ
I|

(6) The eigenvalues of A−1 are the reciprocal of the eigenvalues

of A.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

Theorem

If A is a symmetric matrix with all real elements, then the n

eigenvalues are all real numbers.

Theorem (important!!)

For a real symmetric matrix A,

xi
Txi = 1 and xi

Txj = 0, ∀ i 6= j

(normalization) (orthogonal)

⇒ (x1,x2, · · · ,xn) are said to be a set of orthonormal vectors.

Proof xi
Tλjxj = xi

TAxj = (xi
TAxj)

T

= xj
TAT (xi

T )T = xj
TAxi = xj

Tλixi

⇒ λj(xi
Txj) = λi(xj

Txi) or (λj − λi)(xiTxj) = 0

⇒ If λj 6= λi, then xi
Txj = 0.

If λj = λi, then we can find xi and xj such that xi
Txj = 0.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

d2q =
[
dx1 · · · dxn

]



f11 · · · f1n

...
. . .

...

fn1 · · · fnn







dx1

...

dxn


 = uTHu

Let B =



| | | |
x1 x2 · · · xn

| | | |




n×n

⇒ B is nonsingular (WHY?) and hence B−1 exists

Let y = B−1u (or u = By)
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Multivariate Calculus and Optimization eigenvalue and eigenvector

⇒ d2q = uTHu = (By)TH(By) = yT (BTHB)y

= yT




− x1
T −

− x2
T −

− ... −
− xn

T −







| | | |
λ1x1 λ2x2 · · · λnxn

| | | |


y

= yT




λ1x1
Tx1 λ2x1

Tx2 · · · λnx1
Txn

λ1x2
Tx1 λ2x2

Tx2 · · · λnx2
Txn

...
...

. . .
...

λ1xn
Tx1 λ2xn

Tx2 · · · λnxn
Txn



y

= yT




λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn



y = λ1y1

2 + λ2y2
2 + · · ·+ λnyn

2
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Multivariate Calculus and Optimization eigenvalue and eigenvector

Conclusions

1. H is positive definite if and only if λi > 0 ∀ i
2. H is negative definite if and only if λi < 0 ∀ i
3. H is positive semidefinite if and only if λi ≥ 0 ∀ i
4. H is negative semidefinite if and only if λi ≤ 0 ∀ i
5. H is indefinite if and only if some λs are positive while others are

negative.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

ex: Find the extreme value(s) of q = −1.5x2 + 3xz + 2y − y2 − 3z2

and determine whether they are maxima or minima with the

eigenvalue test.

⇒ qx = −3x+ 3z = 0
set

qy = 2− 2y = 0 ⇒ (x, y, z) = (0, 1, 0)
set

qz = 3x− 6z = 0
set

⇒ H =



−3 0 3

0 −2 0

3 0 −6


 ⇒

∣∣∣∣∣∣∣

−3− λ 0 3

0 −2− λ 0

3 0 −6− λ

∣∣∣∣∣∣∣

= −(λ+ 2)(λ2 + 9λ+ 9) = 0

⇒ λ1 = −2, λ2 = −9 + 3
√

5
2 , λ3 = −9− 3

√
5

2
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Multivariate Calculus and Optimization implicit function

PSfrag replacements

P

Q

P1

P2

Q1 Q2

S(P )

D(P,M2)

D(P,M1)

1

At each equilibrium point,

Z(P,M) = D(P,M)− S(P ) = 0

Q: P = P (M) ?

Q: If yes, what will dP
dM

be ?
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Multivariate Calculus and Optimization implicit function

ex: y = f(x) = 2x2

⇒ F (y, x) = y − 2x2 = 0

ex: y = f(x1, x2) = x1

x1 + x2
2

⇒ F (y, x1, x2) = y(x1 + x2
2)− x1 = 0

Q: Does there exist a function f : Rm → R (i.e., y = f(x),

x ∈ Rm) corresponding to the relationship defined by

F : Rm+1 → R (i.e., F (y,x) = 0) ?
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Multivariate Calculus and Optimization implicit function

Implicit Function Theorem

If (1) F : Rm+1 → R,

(2) all the first partial derivatives of F are continuous,

(3)
∂F (y,x)

∂y
6= 0, at the point (ȳ, x̄) satisfying F (y,x) = 0,

then there exist Nε1(x̄) and Nε2(ȳ)

and a function f : Nε1(x̄)→ Nε2(ȳ) satisfying

F (f(x),x) = 0, ∀ x ∈ Nε1(x̄)

Also, f and fi, i = 1 ∼ m are continuous.
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Multivariate Calculus and Optimization implicit function

ex: F (y, x) = x2 + y2 − 1 = 0

⇒ Fy = 2y, Fx = 2x are continuous

⇒ Fy 6= 0 except when y = 0

Fy dy + Fx dx = 2y dy + 2x dx = 0

PSfrag replacements

y

x

ȳ

x̄

dy
dx = −Fx

Fy
= −x

y

1
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Multivariate Calculus and Optimization implicit function

ex: U = U(x1, x2) = U0

⇒ U(x1, f(x1)) = U0, ∀ x1 ∈ Nε(x̄1)

⇒ U1(x1, f(x1)) dx1 + U2(x1, f(x1))f ′(x1) dx1 = 0

⇒ f ′(x1) = −U1(x1, f(x1))
U2(x1, f(x1))

= −MRS12.

PSfrag replacements

x2

x1

x2

x1

U0

1
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Multivariate Calculus and Optimization implicit function

Note that the implicit function theorem is sufficient but not

necessary.

ex: F (y, x) = (x− y)3 = 0

⇒ Fx = 3x2 − 6xy + 3y2

Fy = −3x2 + 6xy − 3y2

⇒ Fy(0, 0) = 0

PSfrag replacements

y

x

1
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Multivariate Calculus and Optimization implicit function

Implicit Function Rule

F (y,x) = 0 with Fy 6= 0

⇒ Fy dy + F1 dx1 + F2 dx2 + · · ·+ Fm dxm = 0

and dy = f1 dx1 + f2 dx2 + · · ·+ fm dxm [ ∵ y = f(x) ]

⇒ (Fyf1 + F1) dx1 + (Fyf2 + F2) dx2 + · · ·+ (Fyfm + Fm) dxm = 0

⇒ Fyfi + Fi = 0, ∀ i

⇒ fi ≡ ∂y
∂xi

= −FiFy , ∀ i
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Multivariate Calculus and Optimization implicit function

ex: Z(P,M) = D(P,M)− S(P ) = 0

⇒ ∂Z(P,M)
∂M

=
∂D(P,M)

∂M
> 0

∂Z(P,M)
∂P

=
∂D(P,M)

∂P
− dS(P )

dP
< 0

⇒ P = P (M)

dP
dM

= −∂Z/∂M
∂Z/∂P

> 0 and dQ
dM

=
(
dS
dP

)(
dP
dM

)
> 0

ex: x2 + y2 + z2 = 1
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Multivariate Calculus and Optimization implicit function

Implicit Function Theorem (Extension)

Given F i(y,x) = 0, i = 1 ∼ n, y ∈ Rn, x ∈ Rm. If

(1) function F 1, F 2, · · · , F n all have continuous first partial

derivatives with respect to all the y and x variables.

(2) at the point (y,x) satisfying F i(y,x) = 0, i = 1 ∼ n,

|J | ≡
∣∣∣∣
∂(F 1, F 2, · · · , F n)

∂(y1, y2, · · · , yn)

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

∂F 1

∂y1

∂F 1

∂y2
· · · ∂F 1

∂yn
∂F 2

∂y1

∂F 2

∂y2
· · · ∂F 2

∂yn
...

...
. . .

...
∂Fn

∂y1

∂Fn

∂y2
· · · ∂Fn

∂yn

∣∣∣∣∣∣∣∣∣∣∣

6= 0,

then there exist an m-dimensional neighborhood Nε(x̄)

in which all yj, j = 1 ∼ n, are functions of x.

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 274 / 423



Multivariate Calculus and Optimization implicit function

ex: Given x2 + y2 + z2 = 3 and x+ 2y + 3z = 0, are x and y

defined as functions of z around the point

(x = 1, y = 1, z = −1) ?
⇒ F 1(x, y, z) = x2 + y2 + z2 − 3 = 0

F 2(x, y, z) = x+ 2y + 3z = 0

⇒ |J | =

∣∣∣∣∣∣

∂F 1

∂x
∂F 1

∂y
∂F 2

∂x
∂F 2

∂y

∣∣∣∣∣∣
=

∣∣∣∣∣
2x 2y

1 2

∣∣∣∣∣ = 4x− 2y

which equals 2 at (x = 1, y = 1, z = −1)

⇒ Thus, x = x(z) and y = y(z) around (1, 1,−1)
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Multivariate Calculus and Optimization implicit function

ex: Y = C + I0 +G0

C = α+ β(Y − T )

T = γ + δY

⇒ F 1(Y,C, T, I0, G0, α, β, γ, δ) = Y − C − I0 −G0 = 0

F 2(Y,C, T, I0, G0, α, β, γ, δ) = C − α− β(Y − T ) = 0

F 3(Y,C, T, I0, G0, α, β, γ, δ) = T − γ − δY = 0

⇒ |J | =

∣∣∣∣∣∣∣∣∣

∂F 1

∂Y
∂F 1

∂C
∂F 1

∂T
∂F 2

∂Y
∂F 2

∂C
∂F 2

∂T
∂F 3

∂Y
∂F 3

∂C
∂F 3

∂T

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

1 −1 0

−β 1 β

−δ 0 1

∣∣∣∣∣∣∣
= 1 + βδ − β 6= 0

⇒ Y = Y (I0, G0, α, β, γ, δ)

C = C(I0, G0, α, β, γ, δ)

T = T (I0, G0, α, β, γ, δ)
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Multivariate Calculus and Optimization implicit function

Implicit Function Rule (Extension)

F i = 0 ⇒ dF i = 0, ∀ i
⇒ ∂F i

∂y1
dy1 + · · ·+ ∂F i

∂yn
dyn = −(∂F

i

∂x1
dx1 + · · ·+ ∂F i

∂xm
dxm), ∀ i

Let dxk = 0, ∀k 6= 1, then



∂F 1

∂y1
· · · ∂F 1

∂yn
...

. . .
...

∂F n

∂y1
· · · ∂F n

∂yn







∂y1

∂x1
...
∂yn
∂x1


 =




−∂F
1

∂x1
...

−∂F
n

∂x1




⇒ ∂yj
∂x1

=
|Jj|
|J | , j = 1 ∼ n and |J | 6= 0 guarantees a unique

solution.
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Multivariate Calculus and Optimization implicit function

ex: F 1(x, y, z) = x2 + y2 + z2 − 3 = 0

F 2(x, y, z) = x+ 2y + 3z = 0

⇒ 2x dx + 2y dy = −2z dz

1 dx + 2 dy = −3 dz

⇒
[

2x 2y

1 2

][
dx/dz

dy/dz

]
=

[
−2z

−3

]

⇒ dx
dz

=

∣∣∣∣∣
−2z 2y

−3 2

∣∣∣∣∣∣∣∣∣∣
2x 2y

1 2

∣∣∣∣∣

=
6y − 4z
4x− 2y which equals 5 at (1, 1,−1).
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Multivariate Calculus and Optimization implicit function

ex: F 1 = Y − C − I0 −G0 = 0

F 2 = C − α− β(Y − T ) = 0

F 3 = T − γ − δY = 0

⇒
dY − dC = dI0 + dG0

−β dY + dC + β dT = dα + (Y − T )dβ

−δ dY + dT = dγ + Y dδ

Let dI0 = dG0 = dα = dβ = dγ = 0, then



1 −1 0

−β 1 β

−δ 0 1






∂Y/∂δ

∂C/∂δ

∂T/∂δ


 =




0

0

Y




⇒ ∂Y
∂δ

= 1
1 + βδ − β

∣∣∣∣∣∣∣

0 −1 0

0 1 β

Y 0 1

∣∣∣∣∣∣∣
=

−βY
1 + βδ − β

which equals −βȲ
1 + βδ − β at (Ȳ , C̄, T̄ ).

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 279 / 423



Constrained Optimization

Constrained Optimization
refer to textbook

Ch.12 Optimization with Equality Constraints

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 280 / 423



Constrained Optimization finding the stationary values

max U(x1, x2) = x1x2 + 2x1

s.t. 4x1 + 2x2 = 60

Way 1 :

x2 = 30− 2x1

⇒ U = x1(30− 2x1) + 2x1 = −2x1
2 + 32x1

⇒ dU
dx1

= −4x1 + 32
set
= 0 [ 1st-order condition ]

⇒ x1 = 8 , x2 = 14
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Constrained Optimization finding the stationary values

max U(x1, x2) = x1x2 + 2x1

s.t. 4x1 + 2x2 = 60

Way 2 (Lagrange-Multiplier Method):

L(x1, x2, λ) = (x1x2 + 2x1) + λ(60− 4x1 − 2x2)

⇒ Lλ = 60− 4x1 − 2x2
set
= 0

L1 = x2 + 2− 4λ
set
= 0

L2 = x1 − 2λ
set
= 0





[1st-order conditions]

⇒ x1 = 8 , x2 = 14
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Constrained Optimization finding the stationary values

max U = x2 + 2xy + yw2

s.t. 2x+ y + w2 = 24

x+ w = 8

⇒ L = x2 + 2xy + yw2 + λ1(24− 2x− y − w2) + λ2(8− x− w)

⇒ Lλ1 = 24− 2x− y − w2 set
= 0

Lλ2 = 8− x− w set
= 0

Lx = 2x+ 2y − 2λ1 − λ2
set
= 0

Ly = 2x+ w2 − λ1
set
= 0

Lw = 2yw − 2λ1w − λ2
set
= 0





[1st-order conditions]

⇒ x = 8 , y = 8 , w = 0 , λ1 = 16 , λ2 = 0
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Constrained Optimization finding the stationary values

max U = xyzw

s.t. x+ y + z + w = 4

⇒ L = xyzw + λ(4− x− y − z − w)

⇒ Lλ = 4− x− y − z − w set
= 0

Lx = yzw − λ set
= 0

Ly = xzw − λ set
= 0

Lz = xyw − λ set
= 0

Lw = xyz − λ set
= 0





[1st-order conditions]

⇒ x = 1 , y = 1 , z = 1 , w = 1 , λ = 1
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Constrained Optimization second-order conditions

Determinantal test for a constrained extremum

1. Suppose there are m constraints and n variables.

2. Verify the signs of |Hm+1|, |Hm+2|, · · · , |Hn| (= |H|)

3. Positive definite

{
m is even: + + + + · · ·
m is odd:− − − − · · ·

Negative definite

{
m is even:− + − + · · ·
m is odd: + − + − · · ·
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Constrained Optimization second-order conditions

2nd-order condition (the Bordered Hessian)

Case 1:

L = (x1x2 + 2x1) + λ(60− 4x1 − 2x2)

⇒ m = 1 , n = 2 and

∣∣H
∣∣ =

∣∣∣∣∣∣∣

0 −4 −2

−4 0 1

−2 1 0

∣∣∣∣∣∣∣
;

⇒ |H1+1| = |H2| = |H| = 16> 0
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Constrained Optimization second-order conditions

Case 2:

L = (x2 + 2xy + yw2) + λ1(24− 2x− y −w2) + λ2(8− x−w)

⇒ m = 2 , n = 3 and

∣∣H
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 −2 −1 −2w

0 0 −1 0 −1

−2 −1 2 2 0

−1 0 2 0 2w

−2w −1 0 2w 2y − 2λ1

∣∣∣∣∣∣∣∣∣∣∣∣

;

⇒ |H2+1| = |H3| = |H| = −22< 0
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Constrained Optimization second-order conditions

Case 3:

L = xyzw + λ(4− x− y − z − w)

⇒ m = 1 , n = 4 and

∣∣H
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 −1 −1 −1

−1 0 zw yw yz

−1 zw 0 xw xz

−1 yw xw 0 xy

−1 yz xz xy 0

∣∣∣∣∣∣∣∣∣∣∣∣

;

⇒ |H1+1| = |H2| = 2 , |H3| = −3 , |H4| = |H| = 4
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Constrained Optimization the standard consumer model

max U = U(x1, x2)

s.t. p1x1 + p2x2 = m

⇒ L(x1, x2, λ, p1, p2,m) = U(x1, x2) + λ(m− p1x1 − p2x2)

⇒ Lλ = m− p1x1 − p2x2
set
= 0

L1 = U1 − λp1
set
= 0

L2 = U2 − λp2
set
= 0

}
⇒MRS12 = U1

U2
=
λp1

λp2
=
p1
p2

⇒ |J | =

∣∣∣∣∣∣∣

0 −p1 −p2

−p1 U11 U12

−p2 U21 U22

∣∣∣∣∣∣∣
6= 0 ⇒

x1 = x1(p1, p2,m)

x2 = x2(p1, p2,m)

λ = λ (p1, p2,m)

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 289 / 423



Constrained Optimization the standard consumer model

Define L(p1, p2,m) ≡ L(x1, x2, λ, p1, p2,m)

= U(x1, x2) + λ(m− p1x1 − p2x2)

⇒ ∂L
∂m

= U1
∂x1
∂m

+ U2
∂x2
∂m

+ ∂λ
∂m

(m− p1x1 − p2x2)

+ λ(1− p1
∂x1
∂m
− p2

∂x2
∂m

)

= (U1 − λp1)∂x1
∂m

+ (U2 − λp2)∂x2
∂m

+ (m− p1x1 − p2x2) ∂λ
∂m

+ λ

= λ

⇒ λ measures the effect of a change in m on the optimal value of

the objective function L
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Constrained Optimization the standard consumer model

0dλ− p1dx1 − p2dx2 = x1dp1 + x2dp2 − dm
−p1dλ+ U11dx1 + U12dx2 = λdp1

−p2dλ+ U21dx1 + U22dx2 = λdp2

⇒




0 −p1 −p2

−p1 U11 U12

−p2 U21 U22







dλ

dx1

dx2


 =



x1dp1 + x2dp2 − dm
λ̄dp1

λ̄dp2




⇒ dx1 = 1
|J |

∣∣∣∣∣∣∣

0 x1dp1 + x2dp2 − dm −p2

−p1 λdp1 U12

−p2 λdp2 U22

∣∣∣∣∣∣∣
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Constrained Optimization the standard consumer model

The Price Effect ( Let dm = dp2 = 0 )

⇒ dx1= 1
|J |

∣∣∣∣∣∣∣

0 x1dp1 −p2

−p1 λdp1 U12

−p2 0 U22

∣∣∣∣∣∣∣
= 1
|J |

∣∣∣∣∣∣∣

0 x1 −p2

−p1 λ U12

−p2 0 U22

∣∣∣∣∣∣∣
dp1

⇒ ∂x1
∂p1
≡ dx1

dp1

∣∣∣
dm=dp2=0

= 1
|J |

(
−x1

∣∣∣∣∣
−p1 U12

−p2 U22

∣∣∣∣∣+ λ

∣∣∣∣∣
0 −p2

−p2 U22

∣∣∣∣∣

)
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Constrained Optimization the standard consumer model

The Income Effect ( Let dp1 = dp2 = 0 )

⇒ dx1 = 1
|J |

∣∣∣∣∣∣∣

0 −dm −p2

−p1 0 U12

−p2 0 U22

∣∣∣∣∣∣∣
= 1
|J |

∣∣∣∣∣∣∣

0 −1 −p2

−p1 0 U12

−p2 0 U22

∣∣∣∣∣∣∣
dm

⇒ ∂x1
∂m
≡ dx1

dm

∣∣∣
dp1=dp2=0

= 1
|J |

∣∣∣∣∣
−p1 U12

−p2 U22

∣∣∣∣∣
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Constrained Optimization the standard consumer model

The Substitution Effect (Let dU = 0)

U = U(x1, x2)⇒ dU = U1dx1 + U2dx2 = 0

⇒ λ(p1dx1 + p2dx2) = 0

⇒ x1dp1 + x2dp2 − dm = 0

⇒ ∂x1
∂p1

∣∣∣
U=U

= dx1
dp1

∣∣∣
dU=0 and dp2=0

= 1
|J |

∣∣∣∣∣∣∣

0 0 −p2

−p1 λ U12

−p2 0 U22

∣∣∣∣∣∣∣
= 1
|J |

(
λ

∣∣∣∣∣
0 −p2

−p2 U22

∣∣∣∣∣

)
< 0
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Constrained Optimization the standard consumer model

The Slutsky Equation

∂x1
∂p1

= 1
|J |

(
−x1

∣∣∣∣∣
−p1 U12

−p2 U22

∣∣∣∣∣+ λ

∣∣∣∣∣
0 −p2

−p2 U22

∣∣∣∣∣

)

= 1
|J |

(
λ

∣∣∣∣∣
0 −p2

−p2 U22

∣∣∣∣∣

)
− x1

(
1
|J |

∣∣∣∣∣
−p1 U12

−p2 U22

∣∣∣∣∣

)

= ∂x1
∂p1

∣∣∣
U=U
− x1(∂x1

∂m
)
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Constrained Optimization the standard consumer model

max U = U(x1, x2)

s.t. p1x1 + p2x2 = m

⇒ |H| =

∣∣∣∣∣∣∣

0 −p1 −p2

−p1 U11 U12

−p2 U21 U22

∣∣∣∣∣∣∣
= −(p1

2U22 − 2p1p2U12 + p2
2U11) > 0

Let U(x1, x2) = U0 ⇒ U1dx1 + U2dx2 = dU0 = 0

⇒ dx2
dx1

= −U1
U2

= −MRS12 < 0
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Constrained Optimization the standard consumer model

⇒ d2x2

dx1
2 ≡ d

dx1
(dx2
dx1

)

= d
dx1

(−U1
U2

) = − 1
U2

2 (dU1
dx1
· U2 − dU2

dx1
· U1)

∵ dU1
dx1

= U11 + U12
dx2
dx1

= U11 − U12U1
U2

dU2
dx1

= U21 + U22
dx2
dx1

= U12 − U22U1
U2

⇒ d2x2

dx1
2 = − 1

U2
3 (U1

2U22 − 2U1U2U12 + U2
2U11)

= − λ2

U2
3 (p1

2U22 − 2p1p2U12 + p2
2U11)> 0
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Constrained Optimization the standard consumer model

min C = wL+ rK

s.t. F (L,K) = Q0

⇒ L = wL+ rK + λ[Q0 − F (L,K)]

⇒ Lλ = Q0 − F (L,K)
set
= 0

LL = w − λFL set
= 0

LK = r − λFK set
= 0

}
⇒MRTS = FL

FK
= w
r

Q: Write the bordered Hessian.

Q: Show all the iso-quant curves are negatively sloping and

convex to the origin.
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Constrained Optimization the standard consumer model

(Homogeneous Functions)

A function f defined on RN is homogeneous of degree r if for

every t > 0 we have

f(tx1, tx2, · · · , txN) = trf(x1, x2, · · · , xN).

ex: f(x, y, z) = x
y + 2z

3x

ex: g(x, y, z) = x2

y +
yz
x

ex: h(x, y, z) = 2x2 + 3xy − yz
ex: L(x, y, z) = x3 − 3xy + y2z
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Constrained Optimization the standard consumer model

Suppose the production function y = f(x), x ∈ RN
+ , is

homogeneous of degree r, that is,

f(tx) = trf(x)

then this production function displays:

i. Increasing returns to scale if r > 1

ii. Constant returns to scale if r = 1

iii. Decreasing returns to scale if r < 1
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Constrained Optimization the standard consumer model

Suppose that y = f(x),x ∈ RN
+ is a homogeneous function. If x1

and x2 are any two points on the same level curve of the function

f and we multiply each of these points by the same factor t to

get points tx1 and tx2, respectively, then both of these points will

also lie on a single-level curve.

PSfrag replacements

Q2

L

K

Q1
v
f
g
h
h
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Constrained Optimization the standard consumer model

If f is homogeneous of degree r, then its first-order partial

derivatives (∂f/∂xi, i = 1 . . . N) are homogeneous of degree

r − 1.

Proof: Note that fi(tx) ≡ ∂f(tx)
∂(txi)

6= ∂f(tx)
∂xi

f(tx1, tx2, · · · , txN) = trf(x1, x2, · · · , xN)

⇒ ∂
∂xi

[f(tx1, tx2, · · · , txN)] = ∂
∂xi

[trf(x1, x2, · · · , xN)]

⇒ ∂
∂(txi)

[f(tx1, tx2, · · · , txN)]
d(txi)
dxi

= tr ∂
∂xi

[f(x1, x2, · · · , xN)]

⇒ fi(tx1, tx2, · · · , txN) = tr−1fi(x1, x2, · · · , xN)

ex: f(x1, x2) = x
1/3
1 x

1/4
2 ⇒ f1(x1, x2) = 1

3x
−2/3
1 x

1/4
2
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Constrained Optimization the standard consumer model

If Q = F (K,L) is a production function that is homogeneous of

degree 1, then all its average and marginal products depend only

on the capital-labor ratio.

Proof:

APL ≡ Q
L = 1

LF (K,L) = F (KL ,
L
L) = F (k, 1) = f(k)

APK ≡ Q
K =

(Q/L)
(K/L)

= f(k)/k

MPL ≡ ∂Q
∂L

= ∂
∂L

[L · f(k)] = f(k) + L · f ′(k) · −K
L2

= f(k)− kf ′(k)

MPK ≡ ∂Q
∂K

= ∂
∂K

[L · f(k)] = L · f ′(k) · 1
L = f ′(k)
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Constrained Optimization the standard consumer model

If Q = F (K,L) is a production function which is homogeneous of

degree r and has continuous first-order partial derivatives, then

along any ray from the origin the slope of all isoquants, or the

MRTS, is equal.

Proof:

Note the ratio K/L is constant along any ray from the origin.

MRTS(tK, tL) =
MPL(tK, tL)
MPK(tK, tL)

=
tr−1MPL(K,L)
tr−1MPK(K,L)

=
MPL(K,L)
MPK(K,L)

= MRTS(K,L)
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Constrained Optimization the standard consumer model

Euler’s theorem

If f(x),x ∈ RN
+ , is homogeneous of degree r, then the following

condition holds:

f1x1 + f2x2 + · · ·+ fNxN = rf(x1, x2, . . . , xN)

Proof:

f(tx1, tx2, · · · , txN) = trf(x1, x2, · · · , xN)

⇒ ∂
∂t

[f(tx1, tx2, · · · , txN)] = ∂
∂t

[trf(x1, x2, · · · , xN)]

⇒
N∑
i=1

[ ∂
∂(txi)

f(tx1, tx2, · · · , txN)]
∂(txi)
∂t

= rtr−1f(x1, x2, · · · , xN)

Since this condition holds for any t > 0, it also holds for t = 1

⇒
N∑
i=1

fi(x1, x2, · · · , xN) · xi = rf(x1, x2, · · · , xN)
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Constrained Optimization the standard consumer model

A function is homothetic if it is a monotonic transformation of

some homogeneous function, that is,

f(x1, x2, · · · , xN) = h(g(x1, x2, · · · , xN)) , where h′(z) > 0

ex: f(x1, x2) = 1 + x1
1/2x2

1/2 ⇒ h(z) = 1 + z

ex: f(x1, x2) = (x1
2/3x2

1/3)r , r > 0 ⇒ h(z) = zr

Thus, f1

f2
=
h′(z) · g1

h′(z) · g2
=
g1
g2
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Constrained Optimization the standard consumer model

The elasticity of substitution between inputs for a production

function Q = F (K,L) which has continuous marginal product

functions is defined as

σ =
d ln(K/L)
d ln(w/r)

K

L

A

BC
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Constrained Optimization the standard consumer model

σ ≡ relative change in (K/L)
relative change in (w/r)

=

d(K/L)

(K/L)
d(w/r)

(w/r)

=
d ln(K/L)
d ln(w/r)

=
d ln(K/L)
d ln(MRTS)

ex: F (K,L) = K2/3L1/3
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Integration

Integration
refer to textbook

Ch.14 Economic Dynamics and Integral Calculus
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Integration indefinite integrals

Suppose that d
dx
F (x) = f(x). When the derivative f is

known, we can determine the primitive function F .

⇒
∫
f(x)dx = F (x) + C

where
∫

is the integral sign

f(x) denotes the integrand

C is referred to as the constant of integration
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Integration indefinite integrals

Rules of indefinite integration

Rule 1 (Power rule)
∫
xndx =

1

n+ 1
xn+1 + C , n 6= −1

ex: f(x) = x3 ⇒
∫
x3dx =

1

4
x4 + C

ex: f(x) = 1 ⇒
∫

1dx = x+ C

ex: f(x) =
1

x4 ⇒
∫
x−4dx =

1

(−3)
x−3 + C

ex: f(x) =
√
x3 ⇒

∫
x3/2dx =

2

5
x5/2 + C
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Integration indefinite integrals

Rule 2 (Exponential rule)

∫
exdx = ex + C

and

∫
f ′(x)ef(x)dx = ef(x) + C

ex: f(x) = 2e2x ⇒
∫

2e2xdx = e2x + C

ex: f(x) = (2x) exp(x2) ⇒
∫

(2x) exp(x2)dx = exp(x2) + C
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Integration indefinite integrals

Rule 3 (Logarithmic rule)
∫

1

x
dx = lnx+ C , x > 0

and

∫
g′(x)

g(x)
dx = ln g(x) + C , g(x) > 0

ex: f(x) =
2

x
⇒

∫
2

x
dx = 2 lnx+ C , x > 0

ex: f(x) =
14x

7x2 + 5
⇒

∫
14x

7x2 + 5
dx = ln(7x2 + 5) + C

ex: f(x) =
x

x2 − 1

⇒
∫

x

x2 − 1
dx =





1
2 ln(x2 − 1) + C, x > 1 or x < −1

1
2 ln(1− x2) + C, −1 < x < 1
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Integration indefinite integrals

Rule 4 (integral of a sum)

∫
[f(x) + g(x)]dx =

∫
f(x)dx+

∫
g(x)dx

Rule 5 (integral of a constant multiple)

∫
kf(x)dx = k

∫
f(x)dx

ex:

∫
(3x2 + 8x5)dx = 3

∫
x2dx+ 8

∫
x5dx

= 3(1
3x

3 + C1) + 8(1
6x

6 + C2)

= x3 + 4
3x

6 + C
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Integration indefinite integrals

Rule 6 (the substitution rule)

∫
[f(u) · (du

dx
)]dx = F (u) + C

Proof
d

dx
F (u) = [

d

du
F (u)] · (du

dx
) = f(u) · (du

dx
)

ex:

∫
6x2(x3 + 2)99dx ⇒ Let u = x3 + 2 , then

du

dx
= 3x2

=

∫
2(3x2)(x3 + 2)99dx = 2

∫
u99(

du

dx
)dx

=
2

100
u100 + C =

1

50
(x3 + 2)100 + C
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Integration indefinite integrals

Rule 7 (Integration by parts)

∫
vdu = uv −

∫
udv

Proof

d(uv) = vdu+ udv

⇒
∫
d(uv) =

∫
vdu+

∫
udv

⇒ uv =

∫
vdu+

∫
udv
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Integration indefinite integrals

ex:

∫
x(x+ 1)1/2dx ⇒

Let v = x and du = (x+ 1)1/2dx,

then dv = dx and u = 2
3(x+ 1)3/2

= x
[2
3

(x+ 1)3/2
]
−
∫

2

3
(x+ 1)3/2dx

= 2
3x(x+ 1)3/2 − 4

15(x+ 1)5/2 + C
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Integration indefinite integrals

ex:

∫
lnxdx ⇒

Let v = lnx and du = dx ,

then dv = 1
xdx and u = x

= x lnx−
∫
x(

1

x
dx) = x lnx− x+ C

ex:

∫
xexdx ⇒

Let v = x and du = exdx ,

then dv = dx and u = ex

= xex −
∫
exdx = xex − ex + C
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Differential Equations

Differential Equations
refer to textbook

Ch.15 Continuous Time: First-Order Differential Equations

Ch.16 Higher-Order Differential Equations
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Differential Equations 1st-order linear differential equations

First-Order Linear Differential Equations

dy
dt

+ u(t)y = w(t)

or

ẏ + u(t)y = w(t)

Note that ( dy/dt ) → 1st-order

( d2y/dt2 ) → 2nd-order

( dy/dt )1 → degree 1

( dy/dt )r → degree r
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Differential Equations 1st-order linear differential equations

Case 1 (Homogeneous with Constant Coefficients)

ex: dy
dt

+ 4y = 0

⇒ dy
dt

= −4y or 1
ydy = −4dt

⇒
∫

1

y
dy =

∫
(−4)dt

⇒ ln |y| = −4t+ C or |y| = e−4t+C

⇒ y(t) = ±e−4t · eC = ±Ae−4t [ general solution ]

= y(0)e−4t [ definite solution ]
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Differential Equations 1st-order linear differential equations

Case 2 (Nonhomogeneous with Constant Coefficients)

ex: dy
dt

+ 2y = 6 ⇒




(reduced eq.) dy
dt

+ 2y = 0

=⇒ yc = Ae−2t complementary function

(complete eq.) dy
dt

+ 2y = 6

=⇒ yp = 3 particular integral
try y = k

⇒ y(t) = yc + yp = Ae−2t + 3 [ general solution ]

= [y(0)− 3]e−2t + 3 [ definite solution ]
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Differential Equations 1st-order linear differential equations

proof:

dy
dt

+ ay = b ⇒ yp

dy
dt

+ ay = 0 ⇒ yc

Let y = yp + yc , then

dy
dt

= d
dt

(yp + yc) =
dyp
dt

+
dyc
dt

ay = a(yp + yc) = ayp + ayc

⇒ dy
dt

+ ay = (
dyp
dt

+ ayp) + (
dyc
dt

+ ayc) = b

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 323 / 423



Differential Equations 1st-order linear differential equations

ex: dy
dt

= 2

Way 1

∫
dy =

∫
2dt ⇒ y

(
t) = 2t+ C = y(0) + 2t

Way 2

dy
dt

= 0 =⇒ yc = A

dy
dt

= 2 =⇒ yp = 2t
try y = kt

⇒ y(t) = yc + yp = A+ 2t = y(0) + 2t
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Differential Equations 1st-order linear differential equations

Case 3 (Homogeneous with Variable Coefficients)

ex: dy
dt

+ (3t2)y = 0

⇒
∫

1

y
dy =

∫
(−3t2)dt

⇒ ln |y| = −t3 + C

⇒ y(t) = ±Ae−t3 = y(0)e−t
3
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Differential Equations 1st-order linear differential equations

Case 4 (Nonhomogeneous with Variable Coefficients)

Exact Differential Equations

We say that

M dy +N dt = 0

is exact if and only if there exists a function F (y, t) such that

M = ∂F
∂y

and N = ∂F
∂t

, (or ∂M
∂t

= ∂N
∂y

is met)

⇒ dF (y, t) = ∂F
∂y

dy + ∂F
∂t
dt = 0
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Differential Equations 1st-order linear differential equations

Step 1 F (y, t) =

∫
Mdy + ψ(t)

Step 2
∂

∂t
[

∫
Mdy + ψ(t)] = N

Step 3 Solve for ψ(t)

Step 4 Replace ψ(t) into F (y, t) and then F (y, t) = C

will be the solution.
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Differential Equations 1st-order linear differential equations

ex: (2yt)dy + y2dt = 0

⇒ ∂
∂t

(2yt) = 2y = ∂
∂y

(y2) Exact !

Step 1 F (y, t) =

∫
(2yt)dy + ψ(t) = ty2 + C1 + ψ(t)

Step 2 ∂
∂t

[ty2 + C1 + ψ(t)] = y2 + ψ′(t) = y2 ⇒ ψ′(t) = 0

Step 3 ψ(t) = C2

Step 4 F (y, t) = ty2 + C1 + C2 = C3

⇒ ty2 = C or y(t) = ±
√
C
t
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Differential Equations 1st-order linear differential equations

ex: (t+ 2y)dy + (y + 3t2)dt = 0

⇒ ∂
∂t

(t+ 2y) = 1 = ∂
∂y

(y + 3t2) Exact !

Step 1 F (y, t) =

∫
(t+ 2y)dy + ψ(t) = ty + y2 + C1 + ψ(t)

Step 2 ∂
∂t

[ty + y2 + C1 + ψ(t)] = y + ψ′(t) = y + 3t2

⇒ ψ′(t) = 3t2

Step 3 ψ(t) = t3 + C2

Step 4 F (y, t) = ty + y2 + C1 + t3 + C2 = C3

⇒ y2 + ty + (t3 − C) = 0

⇒ y(t) =
−t±

√
t2 − 4(t3 − C)

2
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Differential Equations 1st-order linear differential equations

What if ∂
∂t
M 6= ∂

∂y
N ?

ex: (2t)dy + ydt = 0

⇒ ∂
∂t

(2t) = 2 6= 1 = ∂
∂y
y

ex: 2(t3 + 1)dy + (3yt2)dt = 0

⇒ ∂
∂t

(2t3 + 2) = 6t2 6= 3t2 = ∂
∂y

(3yt2)

ex: (4y3t)dy + (2y4 + 3t)dt = 0

⇒ ∂
∂t

(4y3t) = 4y3 6= 8y3 = ∂
∂y

(2y4 + 3t)
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Differential Equations 1st-order linear differential equations

⇒ Look for the possible Integrating Factors !

ex: (2ty)dy + y2dt = 0

⇒ ∂
∂t

(2ty) = 2y = ∂
∂y

(y2)

ex: 2(t3 + 1)ydy + (3y2t2)dt = 0

⇒ ∂
∂t

[2(t3 + 1)y] = 6t2y = ∂
∂y

(3y2t2)

ex: (4y3t2)dy + (2y4t+ 3t2)dt = 0

⇒ ∂
∂t

(4y3t2) = 8y3t = ∂
∂y

(2y4t+ 3t2)
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Differential Equations 1st-order linear differential equations

Integrating Factors

dy
dt

+ u(t)y = w(t) ⇒ dy + [u(t)y − w(t)]dt = 0

⇒ I(t)dy + I(t)[u(t)y − w(t)]dt = 0

⇒ ∂
∂t
I(t) = ∂

∂y

(
I(t)[u(t)y − w(t)]

)
= I(t)u(t)

⇒
∫

1

I
dI =

∫
u(t)dt = ln |I|

⇒ I(t) = exp[

∫
u(t)dt]
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Differential Equations 1st-order linear differential equations

ex: 2tdy + ydt = 0

⇒ dy
dt

+ ( 1
2t)y = 0 ⇒ u(t) = 1

2t

⇒ I.F. = exp[

∫
1

2t
dt] = e

1
2

ln t = t
1
2

Check:

dy + ( 1
2t)ydt = 0

⇒ t
1
2dy + (1

2t
− 1

2 )ydt = 0

⇒ ∂
∂t

(t
1
2 ) = 1

2t
− 1

2 = ∂
∂y

[(1
2t
− 1

2 )y]
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Differential Equations 1st-order linear differential equations

ex: 2(t3 + 1)dy + 3yt2dt = 0

⇒ dy
dt

+ 3t2

2(t3 + 1)
y = 0 ⇒ u(t) = 3t2

2(t3 + 1)

⇒ I.F. = exp[

∫
3t2

2(t3 + 1)
dt] = e

1
2

ln(t3+1) = (t3 + 1)
1
2

Check:

dy + 3t2

2(t3 + 1)
ydt = 0

⇒ (t3 + 1)
1
2dy + 3

2t
2(t3 + 1)−

1
2ydt = 0

⇒ ∂
∂t

[(t3 + 1)
1
2 ] = 1

2(t3 + 1)−
1
2 (3t2) = ∂

∂y
[32t

2(t3 + 1)−
1
2 ]
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Differential Equations Bernoulli equation

Bernoulli Equation

dy
dt

+R(t)y = F (t)ym , m 6= 0, 1.

⇒ y−m · dy
dt

+R(t)y1−m = F (t)

Let z = y1−m, so that

dz
dt

= (dz
dy

)(
dy
dt

) = (1−m)y−m(
dy
dt

)

⇒ 1
1−m ·

dz
dt

+R(t)z = F (t)

or dz
dt

+ (1−m)R(t)z = (1−m)F (t)
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Differential Equations Bernoulli equation

ex: dy
dt

+ (1
t )y = y3 ⇒ y−3dy

dt
+ (1

t )y−2 = 1

⇒ Let z = y−2, so that dz
dt

= (dz
dy

)(
dy
dt

) = (−2)y−3(
dy
dt

)

⇒ 1
(−2)

dz
dt

+ (1
t )z = 1 or dz

dt
+ (−2

t )z = −2

⇒ I.F. = exp[

∫
(
−2

t
)dt] = e−2 ln t =

1

t2

⇒ ( 1
t2

)dz + [(−2
t3

)z + 2( 1
t2

)]dt = 0

Check:

∂
∂t

[ 1
t2
]

= (−2)t−3 = ∂
∂z

[(−2
t3

)z + 2( 1
t2

)]
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Differential Equations Bernoulli equation

( 1
t2

)dz +
[
(−2
t3

)z + 2( 1
t2

)
]
dt = 0

Step 1 F (z, t) =

∫
(

1

t2
)dz + ψ(t) = t−2z + ψ(t)

Step 2 ∂
∂t

[t−2z + ψ(t)] = (−2)t−3z + ψ′(t) = (−2
t3

)z + 2( 1
t2

)

⇒ ψ′(t) = 2t−2

Step 3 ψ(t) = (−2)t−1

Step 4 F (z, t) = t−2z + (−2)t−1 = C

⇒ z = 2t+ Ct2= y−2

⇒ y(t) = ±
√

1
2t+ Ct2
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Differential Equations phase diagram

Phase Diagram dy
dt

= f(y)

ex: dy
dt

= y − 7 ⇒ dy
dt
− y = −7

⇒ yc = Aet and yp = 7

⇒ y(t) = Aet + 7 = [y(0)− 7]et + 7

PSfrag replacements

dy
dt

dy
dt = 0 (equilibrium)

7
y

1

y(t)

7

0 t

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 338 / 423



Differential Equations phase diagram

ex: dy
dt

= (y + 1)2 − 16

dy
dt

dy
dt

= 0 dy
dt

= 0

y
−5 3

y(t)

3

0

−5

t
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Differential Equations Solow growth model

Solow Growth Model

Y = F (K,L)
CRTS−→ Y = L · F (KL ,

L
L) = L · f(k)

or y = f(k)

PSfrag replacements

k

y = f(k)

k∗

k∗f ′(k∗)

f(k∗)− k∗f ′(k∗)
MPL ≡ ∂Y

∂L
= f(k)− kf ′(k)

MPK ≡ ∂Y
∂K

= f ′(k)

FKK ≡ ∂
∂K

f ′(k) =
f ′′(k)
L
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Differential Equations Solow growth model

Solow Growth Model

I = dK
dt

+ δK = K̇ + δK (0 < δ < 1)

S = sY (0 < s < 1) I
set
= S

γL ≡ L̇
L = n

⇒ sY = K̇ + δK = (γK + δ)K (Note that γK = γk + γL)

⇒ sy = (γk + n+ δ)k = k̇ + (n+ δ)k

or k̇ = sf(k)− (n+ δ)k [Solow equation]

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 341 / 423



Differential Equations Solow growth model

Solow Growth Model

0

PSfrag replacements

k

k

f(k)

k∗

sf(k)

(n + δ)k

k̇

sf(k)− (n + δ)k

c∗
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Differential Equations Solow growth model

Solow Growth Model

γk ≡ k̇/k = sf(k)/k − (n+ δ)

0

PSfrag replacements

k

sf(k)/k

k∗krichkpoor

n + δ

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 343 / 423



Differential Equations Solow growth model

Solow Growth Model

γk ≡ k̇/k = sf(k)/k − (n+ δ)

0

PSfrag replacements

k

γk

k∗krichkpoor

Hypothesis: Poor Economies tend to grow faster per capita

than rich ones.
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Differential Equations Solow growth model

Solow Growth Model

0

PSfrag replacements

k

γk(poor)

k∗krichkpoor

γk(rich)

• saving rate • production function

• depreciation rate • population growth rate

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 345 / 423



Differential Equations Solow growth model

Solow Growth Model

ex: k̇ = sk0.7 − (n+ δ)k

⇒ dk
dt

+ (n+ δ)k = sk0.7 or k−0.7(dk
dt

) + (n+ δ)k0.3 = s

Let z = k0.3 so that dz
dt

= 0.3k−0.7(dk
dt

)

hence dz
dt

+ 0.3(n+ δ)z = 0.3s

⇒ z(t) = s
n+ δ

+ [z(0)− s
n+ δ

] e−0.3(n+δ)t or

k(t) =
{

s
n+ δ

+ [k(0)0.3 − s
n+ δ

] e−0.3(n+δ)t
} 1

0.3
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Differential Equations Solow growth model

Solow Growth Model

ex: Maximize c∗ = f(k∗)− sf(k∗) = (1− s)f(k∗)

⇒ Since sf(k∗)− (n+ δ)k∗ = 0 at equilibrium (WHY?)

therefore, k∗ = k∗(s) and dk∗

ds
= − f(k∗)

sf ′(k∗)− (n+ δ)

⇒ dc∗

ds
= −f(k∗) + (1− s)f ′(k∗) · ( d

ds
k∗)

= −f(k∗) + (1− s)f ′(k∗) ·
(
− f(k∗)
sf ′(k∗)− (n+ δ)

)

=

(
− f(k∗)
sf ′(k∗)− (n+ δ)

)
· [f ′(k∗)− (n+ δ)]
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Differential Equations Solow growth model

Solow Growth Model

PSfrag replacements

k

f(k)

k∗(sGOLD)

sGOLDf(k)

(n + δ)k
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Differential Equations Nth-order linear differential equations

Nth-Order Linear Differential Equations

dny
dtn

+ a1
dn−1y
dtn−1 + · · ·+ an−1

dy
dt

+ any = b

or y(n)(t) + a1y
(n−1)(t) + · · ·+ an−1y

′(t) + any = b

1. Look for the particular integral: yp

ex: y′′(t) + y′(t)− 2y(t) = −10
=⇒

try yp = k yp = 5 O

ex: y′′(t) + y′(t) = −10
=⇒

try yp = k 0 = −10 X

=⇒
try yp = kt yp = −10t O

ex: y′′(t) = −10
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Differential Equations Nth-order linear differential equations

2. Solve the complementary function: yc

y′′(t) + a1y
′(t) + a2y(t) = 0

Let yc = Aert, so that y′(t) = rAert and y′′(t) = r2Aert

⇒ Aert(r2 + a1r + a2) = 0, we call r2 + a1r + a2 = 0 as a

characteristic (or auxiliary) equation. (Can A = 0 happen?)

⇒ r1, r2 =
−a1 ±

√
a1

2 − 4a2

2 ⇒ y1 = A1e
r1t, y2 = A2e

r2t

⇒ yc = y1 + y2 = A1e
r1t + A2e

r2t

(Why not just pick any one of them?)
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Differential Equations Nth-order linear differential equations

Case 1. Two distinct real roots (a2
1 > 4a2)

ex: y′′(t) + y′(t)− 2y(t) = −10

⇒ r2 + r − 2 = (r + 2)(r − 1) = 0 ⇒ r1 = 1, r2 = −2

⇒ yc = A1e
1t +A2e

−2t and y(t) = yc + yp = A1e
1t +A2e

−2t + 5

If we let y(0) = 12 and y′(0) = −2, then

A1 + A2 + 5 = 12 and A1 + (−2)A2 = −2

⇒ A1 = 4, A2 = 3, and y(t) = 4e1t + 3e−2t + 5
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Differential Equations Nth-order linear differential equations

Case 2. Two repeated real roots (a2
1 = 4a2 ⇒ r = −a1

2 )

ex: y′′(t) + 6y′(t) + 9y(t) = 27

⇒ r2 + 6r + 9 = (r + 3)2 = 0 ⇒ r1 = r2 = −3

⇒ yc = A1e
−3t + A2e

−3t = A3e
−3t

(Only one constant can be identified!)

If we let yc = A4te
rt (Can it be another solution?)

then y(t) = (A3 + A4t)e
−3t + 3

(Solve the definite solution given y(0) = 5 and y′(0) = −5)
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Differential Equations Nth-order linear differential equations

Trigonometric Functions and Complex Numbers

Z = a+ bi =
√
a2 + b2

(
a√

a2 + b2
+

b√
a2 + b2

i

)

= R(cos θ + i sin θ)

• sin2 θ + cos2 θ = 1

• sin(θ1 ± θ2) = sin θ1 cos θ2 ± cos θ1 sin θ2

cos(θ1 ± θ2) = cos θ1 cos θ2 ∓ sin θ1 sin θ2

• Z1Z2 = R1R2 (cos(θ1 + θ2) + i sin(θ1 + θ2))

• Zn = Rn (cosnθ + i sinnθ)

• d
dθ

sin θ = cos θ, d
dθ

cos θ = − sin θ

(a, b)

θ

R
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Differential Equations Nth-order linear differential equations

Trigonometric Functions and Complex Numbers

f(θ) = sin θ f(0) = 0 g(θ) = cos θ g(0) = 1

f ′(θ) = cos θ f ′(0) = 1 g′(θ) = − sin θ g′(0) = 0

f ′′(θ) = − sin θ f ′′(0) = 0 g′′(θ) = − cos θ g′′(0) = −1

f ′′′(θ) = − cos θ f ′′′(0) = −1 g′′′(θ) = sin θ g′′′(0) = 0

f (4)(θ) = sin θ f (4)(0) = 0 g(4)(θ) = cos θ g(4)(0) = 1
...

...
...

...

sin θ = 0 +
1

1!
θ +

0

2!
θ2 +

−1

3!
θ3 +

0

4!
θ4 +

1

5!
θ5 + · · ·+ f (n)(p)

(n+ 1)!
θn+1

= θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

↘
0 as n→∞

cos θ = 1− θ2

2!
+ θ4

4!
− θ6

6!
+ · · ·
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Differential Equations Nth-order linear differential equations

Trigonometric Functions and Complex Numbers

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ · · ·

e(iθ) = 1 +
(iθ)

1!
+

(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · ·

= 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+
iθ5

5!
· · ·

=

(
1− θ2

2!
+
θ4

4!
− θ6

6!
· · ·
)

+ i

(
θ − θ3

3!
+
θ5

5!
− θ7

7!
· · ·
)

= cos θ + i sin θ

e(−iθ) = cos θ−i sin θ

Z = a± bi = R(cos θ ± i sin θ) = Re±iθ

cartesian form polar form exponential form

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 355 / 423



Differential Equations Nth-order linear differential equations

Case 3. Two (conjugate) complex roots (a2
1 < 4a2)

r1, r2 =
−a1 ±

√
4a2 − a1

2 i
2 = α± βi

yc = A1e
(α+βi)t +A2e

(α−βi)t

= eαt
(
A1e

iβt +A2e
−iβt

)

= eαt [A1(cosβt+ i sinβt) +A2(cosβt− i sinβt)]

= eαt [(A1 +A2) cosβt+ (A1 −A2)i sinβt]

= eαt [A5 cosβt+A6 sinβt]
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Differential Equations Nth-order linear differential equations

Case 3. Two (conjugate) complex roots (a2
1 < 4a2)

ex: y′′(t) + 2y′(t) + 17y(t) = 34, y(0) = 3, y′(0) = 11

⇒ r2 + 2r + 17 = 0 ⇒ r = −1± 4i

⇒ y(t) = e−t(A5 cos 4t+A6 sin 4t) + 2

and y′(t) = −e−t(A5 cos 4t+A6 sin 4t) + 4e−t(−A5 sin 4t+A6 cos 4t)

∵ y(0) = A5 + 2 = 3 and y′(0) = −A5 + 4A6 = 11

y(t) = e−t(cos 4t+ 3 sin 4t) + 2

=
√

10e−t
(

1√
10

cos 4t+
3√
10

sin 4t

)
+ 2

=
√

10e−t sin(4t+ φ) + 2
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Differential Equations Nth-order linear differential equations

The Dynamic Stability at Equilibrium

Case 1. Two distinct real roots

yc = A1e
r1t + A2e

r2t

Case 2. Two repeated real roots

yc = (A3 + A4t)e
rt

Case 3. Two (conjugate) complex roots

yc = eαt(A5 cos βt+ A6 sin βt)
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Differential Equations Nth-order linear differential equations

0
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0
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25000
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e2t

e2t
t 6

t 6
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Differential Equations Nth-order linear differential equations

-4

-3

-2

-1

0

1

2

3

4

uniform

damped

explosive
fluctuation e0.02t sin θ

e�0.02t sin θ

e0t sin θ
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Differential Equations Nth-order linear differential equations

Differential Equations with a Variable Term

ex: y′′ + 5y′ + 3y = 6t2 − t− 1 ⇒ yp?

y = at2 + bt + c . . .× 3

y′ = 2at + b . . .× 5

y′′ = + 2a . . .× 1

6t2 − t− 1 = 3at2 + (10a+ 3b)t+ (2a+ 5b+ 3c)

⇒ a = 2, b = −7, c = 10

⇒ yp = 2t2 − 7t+ 10 O

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 361 / 423



Differential Equations Nth-order linear differential equations

Differential Equations with a Variable Term

ex: y′′ + 5y′ = 6t2 − t− 1 ⇒ yp?

y = at2 + bt + c . . .× 0

y′ = 2at + b . . .× 5

y′′ = + 2a . . .× 1

6t2 − t− 1 = 10at+ (2a+ 5b) X

y = at3 + bt2 + ct . . .× 0

y′ = 3at2 + 2bt + c . . .× 5

y′′ = + 6at + 2b . . .× 1

6t2 − t− 1 = 15at2 + (6a+ 10b)t+ (2b+ 5c)

⇒ yp = 2
5 t

3 − 17
50 t

2 − 8
125 t O
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Differential Equations Nth-order linear differential equations

Differential Equations with a Variable Term

ex: y′′ + 3y′ − 4y = 2e−4t ⇒ yp?

y = Be−4t . . .× −4

y′ = −4Be−4t . . .× 3

y′′ = 16Be−4t . . .× 1

2e−4t = 0 X
y = Bte−4t . . .× −4

y′ = (1− 4t)Be−4t . . .× 3

y′′ = (−8 + 16t)Be−4t . . .× 1

2e−4t = −5Be−4t ⇒ yp = −2
5 te−4t O
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Differential Equations Nth-order linear differential equations

Differential Equations with a Variable Term

ex: y′′ + y′ + 3y = sin t ⇒ yp?

y = A1 sin t+A2 cos t . . .× 3

y′ = −A2 sin t+A1 cos t . . .× 1

y′′ = −A1 sin t−A2 cos t . . .× 1

sin t = (2A1 −A2) sin t+ (A1 + 2A2) cos t

⇒ yp = 2
5 sin t− 1

5 cos t O
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Differential Equations Nth-order linear differential equations

Higher Order Linear Differential Equations

y(n)(t) + a1y
(n−1)(t) + · · ·+ an−1y

′ + any = b

⇒ rn + a1r
n−1 + · · ·+ an−1r + an = 0 ⇒ r1, r2, · · · rn

distinct real roots:
∑

iAie
rit

repeated real roots:
∑

j Ajt
jert

conjugate complex roots: eαt(A cos βt+B sin βt)

repeated complex roots:
∑

k t
keαt(Ak cos βt+Bk sin βt)

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 365 / 423



Differential Equations Nth-order linear differential equations

Higher Order Linear Differential Equations

ex: y(4) + 6y′′′ + 14y′′ + 16y′ + 8y = 24

⇒ r4 + 6r3 + 14r2 + 16r + 8 = 0

(r + 2)2(r2 + 2r + 2) = 0 ⇒ r = −2, − 2, − 1± i
⇒ y(t) = A1e

−2t + A2te
−2t + e−t(A3 cos t+ A4 sin t) + 3

ex: (2r + 3)3(r − 2)(r2 + r + 1)2 = 0

yc = A1e
−1.5t + A2te

−1.5t + A3t
2e−1.5t + A4e

2t

+ e−1/2t[A5 cos(
√

3/2)t+ A6 sin(
√

3/2)t]

+ e−1/2tt[A7 cos(
√

3/2)t+ A8 sin(
√

3/2)t]
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Differential Equations Nth-order linear differential equations

Convergence and the Routh Theorem

The real parts of all of the roots of the nth-degree polynomial

equation

a0r
n + a1r

n−1 + · · ·+ an−1r + an = 0

are negative if and only if the first n of the following

sequence of determinants |a1|;
∣∣∣∣∣
a1 a3

a0 a2

∣∣∣∣∣;

∣∣∣∣∣∣∣

a1 a3 a5

a0 a2 a4

0 a1 a3

∣∣∣∣∣∣∣
;

∣∣∣∣∣∣∣∣∣

a1 a3 a5 a7

a0 a2 a4 a6

0 a1 a3 a5

0 a0 a2 a4

∣∣∣∣∣∣∣∣∣
; · · · all are positive.
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Differential Equations Nth-order linear differential equations

Convergence and the Routh Theorem

ex: r4 + 6r3 + 14r2 + 16r + 8 = 0
a0 a1 a2 a3 a4

⇒ |6| = 6;

∣∣∣∣∣
6 16

1 14

∣∣∣∣∣ = 68;

∣∣∣∣∣∣∣

6 16 0

1 14 8

0 6 16

∣∣∣∣∣∣∣
= 800;

∣∣∣∣∣∣∣∣∣∣

6 16 0 0

1 14 8 0

0 6 16 0

0 1 14 8

∣∣∣∣∣∣∣∣∣∣

= 6, 400;

⇒ The real parts of all of the roots are negative! (stable)
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Differential Equations Nth-order linear differential equations

Convergence and the Routh Theorem

ex:

8r8 +36r7 +46r6−41r5−222r4−367r3−342r2−189r−54 = 0
a0 a1 a2 a3 a4 a5 a6 a7 a8

⇒ |36| = 36;

∣∣∣∣∣
36 −41

8 46

∣∣∣∣∣ = 1, 984;

∣∣∣∣∣∣∣

36 −41 −367

8 46 −222

0 36 −41

∣∣∣∣∣∣∣
= 100, 672;

∣∣∣∣∣∣∣∣∣

36 −41 −367 −189

8 46 −222 −342

0 36 −41 −367

0 8 46 −222

∣∣∣∣∣∣∣∣∣
= 4, 561, 920; . . .
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Difference Equations

Difference Equations
refer to textbook

Ch.17 Discrete Time: First-Order Difference Equations

Ch.18 Higher-Order Difference Equations
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Difference Equations 1st-order difference equations

First-Order Difference Equations

M yt ≡ yt+1 − yt ex: M yt = 2

⇒ yt+1 − yt = 2 or yt+1 = yt + 2

Iterative Method

y1 = y0 + 2

y2 = y1 + 2 = (y0 + 2) + 2 = y0 + 2(2)

y3 = y2 + 2 = (y0 + 2(2)) + 2 = y0 + 3(2)
...

yt = y0 + t(2) = y0 + 2t
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Difference Equations 1st-order difference equations

First-Order Difference Equations

ex: M yt = −0.1yt ⇒ yt+1 = 0.9yt

Iterative Method

y1 = 0.9y0

y2 = 0.9y1 = (0.9)2y0

y3 = 0.9y2 = (0.9)3y0

...

yt = (0.9)ty0

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 372 / 423



Difference Equations 1st-order difference equations

First-Order Difference Equations

yt+1 + ayt = c complete equation: yt+1 + ayt = c

Try yt = k ⇒ yp = c
1 + a (a 6= −1)

reduced equation: yt+1 + ayt = 0

yt = Abt ⇒ yc = A(−a)t

⇒ yt = A(−a)t + c
1 + a =

[
y0 − c

1 + a

]
(−a)t + c

1 + a

ex: yt+1 − 5yt = 1

⇒ yt = A(5)t − 1
4 = (y0 + 1

4) · 5t − 1
4
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Difference Equations The Cobweb Model

The Cobweb Model

Consider a situation in which the producer’s output decision must

be made one period in advance of the actual date.

⇒ Qdt = α− βPt (α, β > 0)

Qst = −γ + δPt−1 (γ, δ > 0)

⇒ βPt + δPt−1 = α + γ or Pt+1 + δ
β
Pt =

α + γ
β

⇒ Pt = (P0 − α + γ
β + δ

)(−δ
β

)t +
α + γ
β + δ

explosive >

⇒ uniform oscillation if δ = β

damped <
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Difference Equations The Cobweb Model

The Cobweb Model

D

S

P

Q

D

S

P

Q

P0

P0
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Difference Equations Higher-order difference equations

2nd-Order Difference Equations

yt+2 + a1yt+1 + a2yt = c complete equation

1. Look for yp

ex: yt+2 − 3yt+1 + 4yt = 6
=⇒

try yt = k yp = 3 O

ex: yt+2 + yt+1 − 2yt = 12
=⇒

try yt = k 0 = 12 X
=⇒

try yt = kt yp = 4t O

ex: yt+2 − 2yt+1 + yt = 5
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Difference Equations Higher-order difference equations

2nd-Order Difference Equations

2. Solve yc

yt+2 + a1yt+1 + a2yt = 0 reduced equation

Let yt = Abt, so that yt+2 = Abt+2 and yt+1 = Abt+1

⇒ Abt(b2 + a1b+ a2) = 0, we call b2 + a1b+ a2 = 0 as a

characteristic (or auxiliary) equation. (Can A = 0 happen?)

⇒ b1, b2 =
−a1 ±

√
a1

2 − 4a2

2 ⇒ y1 = A1b1
t, y2 = A2b2

t

⇒ yc = y1 + y2 = A1b1
t + A2b2

t
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Difference Equations Higher-order difference equations

2nd-Order Difference Equations

Case 1. Two distinct real roots (a2
1 > 4a2)

ex: yt+2 + yt+1 − 2yt = 12

⇒ b2 + b− 2 = (b+ 2)(b− 1) = 0 ⇒ b1 = 1, b2 = −2

⇒ yt = yc + yp = A1(1)t + A2(−2)t + 4t

If we let y0 = 4 and y1 = 5, then

A1 + A2 = 4 and A1 − 2A2 + 4 = 5

⇒ A1 = 3, A2 = 1, and yt = 3 + (−2)t + 4t
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Difference Equations Higher-order difference equations

Case 2. Two repeated real roots (a2
1 = 4a2 ⇒ b = −a1

2 )

ex: yt+2 + 6yt+1 + 9yt = 4

⇒ b2 + 6b+ 9 = (b+ 3)2 = 0 ⇒ b1 = b2 = −3

⇒ yc = A1(−3)t + A2(−3)t = A3(−3)t

(Only one constant can be identified!)

If we let yc = A4tb
t (Can it be another solution?)

then yt = (A3 + A4t)(−3)t + 1
4
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Difference Equations Higher-order difference equations

Case 3. Two (conjugate) complex roots (a2
1 < 4a2)

b1, b2 =
−a1 ±

√
4a2 − a1

2 i
2 = α± βi

yc = A1(α+ βi)t +A2(α− βi)t

= A1R
t(cos θt+ i sin θt) +A2R

t(cos θt− i sin θt)

= Rt [(A1 +A2) cos θt+ (A1 −A2)i sin θt)]

= Rt(A5 cos θt+A6 sin θt)
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Difference Equations Higher-order difference equations

Case 3. Two (conjugate) complex roots (a2
1 < 4a2)

ex: yt+2 + 1
4yt = 5 ⇒ yp = 4

b2 + 1
4 = 0 ⇒ b = ±1

2i = 1
2(cos π2 ± i sin π2 )

⇒ yt = (1
2)t(A5 cos π2 t+ A6 sin π2 t) + 4

ex: yt+2 − 4yt+1 + 16yt = 0 ⇒ yp = 0

b2 − 4b+ 16 = 0 ⇒ b = 2± 2
√

3i = 4(cos π3 ± i sin π3 )

⇒ yt = 4t(A5 cos π3 t+ A6 sin π3 t)
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Difference Equations Higher-order difference equations

The Convergence of the Time Path

Case 1. Two distinct real roots

yc = A1b1
t + A2b2

t

Case 2. Two repeated real roots

yc = (A3 + A4t)b
t

Case 3. Two (conjugate) complex roots

yc = Rt(A5 cos θt+ A6 sin θt)
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Difference Equations Higher-order difference equations

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

oscillatory

nonoscillatory

b>1
divergent b=1

0<b<1
convergent

b<-1
divergent

-1<b<0
convergent

b=-1
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Difference Equations Higher-order difference equations

Difference Equations with a Variable Term

ex: yt+2 + yt+1 − 3yt = 7t ⇒ yp?

yt = B(7t) . . .× −3

yt+1 = B(7t+1) = 7B(7t) . . .× 1

yt+2 = B(7t+2) = 49B(7t) . . .× 1

7t = 53B(7t)

⇒ B = 1
53 ⇒ yp = 1

537t O

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 384 / 423



Difference Equations Higher-order difference equations

Difference Equations with a Variable Term

ex: yt+2 − 5yt+1 − 6yt = 2 · 6t ⇒ yp?

yt = B(6t) . . .× −6

yt+1 = B(6t+1) = 6B(6t) . . .× −5

yt+2 = B(6t+2) = 36B(6t) . . .× 1

2 · 6t = 0 X

yt = Bt(6t) . . .× −6

yt+1 = B(t+ 1)(6t+1) = 6B(t+ 1)(6t) . . .× −5

yt+2 = B(t+ 2)(6t+2) = 36B(t+ 2)(6t) . . .× 1

2 · 6t = 42B(6t) ⇒ yp = 1
21 t(6

t) O

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 385 / 423



Difference Equations Higher-order difference equations

Difference Equations with a Variable Term

ex: yt+2 + 5yt+1 + 2yt = t2 ⇒ yp?

yt = at2 + bt+ c . . .× 2

yt+1 = a(t+ 1)2 + b(t+ 1) + c

= at2 + (2a+ b)t+ (a+ b+ c) . . .× 5

yt+2 = a(t+ 2)2 + b(t+ 2) + c

= at2 + (4a+ b)t+ (4a+ 2b+ c) . . .× 1

t2 = 8at2 + (14a+ 8b)t+ (9a+ 7b+ 8c)

⇒ a = 1
8 , b = −7

32 , c = 13
256 ⇒ yp = 1

8t
2 − 7

32t+ 13
256 O

ex: yt+2 + 5yt+1 + 2yt = 3t + 2t+ 4t2
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Difference Equations Higher-order difference equations

Higher Order Linear Difference Equations

yt+n + a1yt+n−1 + · · ·+ an−1yt+1 + anyt = b

⇒ bn + a1b
n−1 + · · ·+ an−1b+ an = 0 ⇒ b1, b2, · · · bn

distinct real roots:
∑

iAibi
t

repeated real roots:
∑

j Ajt
jbt

conjugate complex roots: Rt(A cos θt+B sin θt)

repeated complex roots:
∑

k t
kRt(Ak cos θt+Bk sin θt)
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Difference Equations Higher-order difference equations

Higher Order Linear Difference Equations

ex: yt+3 − 7
8yt+2 + 1

8yt+1 + 1
32yt = 9

⇒ b3 − 7
8b

2 + 1
8b+ 1

32 = 0

(2b− 1)2(8b+ 1) = 0 ⇒ b = 1
2 ,

1
2 , −

1
8

⇒ yt = A1(1
2)t + A2t(

1
2)t + A3(−1

8 )t + 32

ex: yt+4 + 6yt+3 + 14yt+2 + 16yt+1 + 8yt = 24

⇒ b4 + 6b3 + 14b2 + 16b+ 8 = 0

(b+ 2)2(b2 + 2b+ 2) = 0 ⇒ b = −2, − 2, − 1± i

⇒ yt = A1(−2)t+A2t(−2)t+(
√

2)t(A3 cos 3π
4 t+A4 sin 3π

4 t)+ 8
15
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Difference Equations Higher-order difference equations

Convergence and the Schur Theorem
The roots of the nth-degree polynomial equation

a0b
n + a1b

n−1 + · · ·+ an−1b+ an = 0
will be less than unity in absolute value if and only if the following

n determinants

M1=

∣∣∣∣∣
a0 an

an a0

∣∣∣∣∣; M2=

∣∣∣∣∣∣∣∣∣

a0 0 an an−1

a1 a0 0 an

an 0 a0 a1

an−1 an 0 a0

∣∣∣∣∣∣∣∣∣
; · · ·

Mn=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 · · · 0 an an−1 · · · a1

a1 a0 · · · 0 0 an · · · a2

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

an−1 an−2 · · · a0 0 0 · · · an

an 0 · · · 0 a0 a1 · · · an−1

an−1 an · · · 0 0 a0 · · · an−2

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.
. . .

.

.

.

a1 a2 · · · an 0 0 · · · a0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

all are positive.
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Difference Equations Higher-order difference equations

Convergence and the Schur Theorem

ex: b2 + 3b+ 2 = 0
a0 a1 a2

⇒ M1=

∣∣∣∣∣
1 2

2 1

∣∣∣∣∣ = −3; M2=

∣∣∣∣∣∣∣∣∣

1 0 2 3

3 1 0 2

2 0 1 3

3 2 0 1

∣∣∣∣∣∣∣∣∣
⇒ divergent!

ex: 6b2 + b− 1 = 0
a0 a1 a2

⇒ M1=

∣∣∣∣∣
6 −1

−1 6

∣∣∣∣∣ = 35; M2=

∣∣∣∣∣∣∣∣∣

6 0 −1 1

1 6 0 −1

−1 0 6 1

1 −1 0 6

∣∣∣∣∣∣∣∣∣
= 1176

⇒ All roots are less than unity in absolute value! (convergent)
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Simultaneous Equations

Simultaneous Equations

refer to textbook

Ch.19 Simultaneous Differential and Difference Equations
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Simultaneous Equations

Transformation of a Higher-Order Dynamic
Equation

ex: yt+3 + a1yt+2 + a2yt+1 + a3yt = c





zt+1 +a1zt +a2xt +a3yt = c

xt+1 −zt = 0

yt+1 −xt = 0

ex: y(3)(t) + a1y
′′(t) + a2y

′(t) + a3y(t) = c





z′(t) +a1x
′(t) +a2x(t) +a3y(t) = c

x′(t) −z(t) = 0

y′(t) −x(t) = 0
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Simultaneous Equations Simultaneous difference equations

Simultaneous Difference Equations

ex: xt+1 + 6xt + 9yt = 4

yt+1 − xt = 0

⇒
[

1 0

0 1

][
xt+1

yt+1

]
+

[
6 9

−1 0

][
xt

yt

]
=

[
4

0

]

1. Guess the particular integrals: xp and yp (Try constants)

⇒
[
xp

yp

]
=

[
7 9

−1 1

]−1 [
4

0

]

= 1
16

[
1 −9

1 7

][
4

0

]
=

[
0.25

0.25

]
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Simultaneous Equations Simultaneous difference equations

[
1 0

0 1

][
xt+1

yt+1

]
+

[
6 9

−1 0

][
xt

yt

]
=

[
0

0

]

2. Solve the complementary functions: xc and yc

⇒ Let xt = mbt and yt = nbt

⇒
[

1 0

0 1

][
mbt+1

nbt+1

]
+

[
6 9

−1 0

][
mbt

nbt

]

=

(
b

[
1 0

0 1

]
+

[
6 9

−1 0

])[
m

n

]
bt =

[
0

0

]

⇒
[
b+ 6 9

−1 b

][
m

n

]
=

[
0

0

]
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Simultaneous Equations Simultaneous difference equations

⇒
∣∣∣∣∣
b+ 6 9

−1 b

∣∣∣∣∣ = 0 = b2 + 6b+ 9 = (b+ 3)2

⇒ b1 = b2 = −3,

[
3 9

−1 −3

][
m

n

]
=

[
0

0

]
⇒ m : n = −3 : 1

⇒
[
xc

yc

]
=

[
−3A3(−3)t − 3A4t(−3)t

A3(−3)t +A4t(−3)t

]

and

[
xt

yt

]
=

[
−3A3(−3)t − 3A4t(−3)t + 0.25

A3(−3)t +A4t(−3)t + 0.25

]
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Simultaneous Equations Simultaneous difference equations

ex: xt+1 − xt − 1/3yt = −1

xt+1 + yt+1 − 1/6yt = 17/2

⇒
[

1 0

1 1

][
xt+1

yt+1

]
+

[
−1 −1/3

0 −1/6

][
xt

yt

]
=

[
−1

17/2

]

1. Guess the particular integrals: xp and yp (Try constants)

⇒
[
xp

yp

]
=

[
0 −1/3

1 5/6

]−1 [ −1

17/2

]

= 1
1/3

[
5/6 1/3

−1 0

][
−1

17/2

]
=

[
6

3

]
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Simultaneous Equations Simultaneous difference equations

[
1 0

1 1

][
xt+1

yt+1

]
+

[
−1 −1/3

0 −1/6

][
xt

yt

]
=

[
0

0

]

2. Solve the complementary functions: xc and yc

⇒ Let xt = mbt and yt = nbt

⇒
[

1 0

1 1

][
mbt+1

nbt+1

]
+

[
−1 −1/3

0 −1/6

][
mbt

nbt

]

=

(
b

[
1 0

1 1

]
+

[
−1 −1/3

0 −1/6

])[
m

n

]
bt =

[
0

0

]

⇒
[
b− 1 −1/3

b b− 1/6

][
m

n

]
=

[
0

0

]
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Simultaneous Equations Simultaneous difference equations

⇒
∣∣∣∣∣
b− 1 −1/3

b b− 1/6

∣∣∣∣∣ = 0 = b2 − 5
6b+ 1

6 = (b− 1
2)(b− 1

3)

⇒ b1 = 1/2,

[
−1/2 −1/3

1/2 1/3

][
m

n

]
= 0 ⇒ m1 : n1 = 2 : −3

b2 = 1/3,

[
−2/3 −1/3

1/3 1/6

][
m

n

]
= 0 ⇒ m2 : n2 = 1 : −2

⇒
[
xc

yc

]
=

[
2A1(1

2)t +A2(1
3)t

−3A1(1
2)t − 2A2(1

3)t

]

and

[
xt

yt

]
=

[
2A1(1

2)t +A2(1
3)t + 6

−3A1(1
2)t − 2A2(1

3)t + 3

]
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Simultaneous Equations Simultaneous differential equations

Simultaneous Differential Equations

ex: x′ + 2y′ + 2x+ 5y = 77

y′ + x+ 4y = 61

⇒
[

1 2

0 1

][
x′

y′

]
+

[
2 5

1 4

][
x

y

]
=

[
77

61

]

1. Guess the particular integrals: xp and yp (Try constants)

⇒
[
xp

yp

]
=

[
2 5

1 4

]−1 [
77

61

]

= 1
3

[
4 −5

−1 2

][
77

61

]
=

[
1

15

]
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Simultaneous Equations Simultaneous differential equations

[
1 2

0 1

][
x′

y′

]
+

[
2 5

1 4

][
x

y

]
=

[
0

0

]

2. Solve the complementary functions: xc and yc

⇒ Let x(t) = mert and y(t) = nert

⇒
[

1 2

0 1

][
rmert

rnert

]
+

[
2 5

1 4

][
mert

nert

]

=

(
r

[
1 2

0 1

]
+

[
2 5

1 4

])[
m

n

]
ert =

[
0

0

]

⇒
[
r + 2 2r + 5

1 r + 4

][
m

n

]
=

[
0

0

]
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Simultaneous Equations Simultaneous differential equations

⇒
∣∣∣∣∣
r + 2 2r + 5

1 r + 4

∣∣∣∣∣ = 0 = r2 + 4r + 3 = (r + 1)(r + 3)

⇒ r1 = −1,

[
1 3

1 3

][
m

n

]
=

[
0

0

]
⇒ m1 : n1 = −3 : 1

r2 = −3,

[
−1 −1

1 1

][
m

n

]
=

[
0

0

]
⇒ m2 : n2 = −1 : 1

⇒
[
xc

yc

]
=

[
−3A1e

−t −A2e
−3t

A1e
−t +A2e

−3t

]

and

[
x(t)

y(t)

]
=

[
−3A1e

−t −A2e
−3t + 1

A1e
−t +A2e

−3t + 15

]
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Simultaneous Equations Two variable phase diagrams

Two Variable Phase Diagrams

x′ + 2y′ + 2x+ 5y = 77 ⇒ x′ = 3y − 45

y′ + x+ 4y = 61 y′ = −x− 4y + 61

• (−5, 12)

• (5, 20)

• A1 = 0

• A2 = 0
10

20

-10 -5 0 5 10
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Simultaneous Equations Two variable phase diagrams

ex: x′ − 2x− y = −4

y′ − 2x+ y = 0

⇒
[

1 0

0 1

][
x′

y′

]
+

[
−2 −1

−2 1

][
x

y

]
=

[
−4

0

]

1. Guess the particular integrals:

⇒
[
xp

yp

]
=

[
−2 −1

−2 1

]−1 [ −4

0

]

= 1
−4

[
1 1

2 −2

][
−4

0

]
=

[
1

2

]
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Simultaneous Equations Two variable phase diagrams

[
1 0

0 1

][
x′

y′

]
+

[
−2 −1

−2 1

][
x

y

]
=

[
0

0

]

2. Solve the complementary functions:

⇒
(
r

[
1 0

0 1

]
+

[
−2 −1

−2 1

])[
m

n

]
=

[
0

0

]

⇒
[
r − 2 −1

−2 r + 1

][
m

n

]
=

[
0

0

]

⇒
∣∣∣∣∣
r − 2 −1

−2 r + 1

∣∣∣∣∣ = 0 = r2 − r − 4
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Simultaneous Equations Two variable phase diagrams

⇒ r1 = 1 +
√

17
2 ,



√

17− 3
2 −1

−2

√
17 + 3

2



[
m

n

]
=

[
0

0

]

⇒ m1 : n1 = 2 : (
√

17− 3)

r2 = 1−
√

17
2 ,



−
√

17− 3
2 −1

−2 −
√

17 + 3
2



[
m

n

]
=

[
0

0

]

⇒ m2 : n2 = −2 : (
√

17 + 3)

⇒
[
xc

yc

]
=

[
2A1e

1+
√
17

2
t − 2A2e

1−
√

17
2

t

(
√

17− 3)A1e
1+
√
17

2
t + (
√

17 + 3)A2e
1−
√
17

2
t

]

and

[
x(t)

y(t)

]
=

[
2A1e

1+
√

17
2 t − 2A2e

1−
√

17
2 t + 1

(
√

17− 3)A1e
1+
√

17
2 t + (

√
17 + 3)A2e

1−
√

17
2 t + 2

]
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Simultaneous Equations Two variable phase diagrams

x′ − 2x− y = −4 ⇒ x′ = 2x+ y − 4

y′ − 2x+ y = 0 y′ = 2x− y

• (5,−10)

• (4,−10)

• A1 = 0

• A2 = 0

-10

10

-10 10
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Simultaneous Equations Two variable phase diagrams

ex: x′ − x+ y = 2

y′ − x− y = 4

⇒
[

1 0

0 1

][
x′

y′

]
+

[
−1 1

−1 −1

][
x

y

]
=

[
2

4

]

1. Guess the particular integrals:

⇒
[
xp

yp

]
=

[
−1 1

−1 −1

]−1 [
2

4

]
=

[
−3

−1

]

2. Solve the complementary functions:

⇒
(
r

[
1 0

0 1

]
+

[
−1 1

−1 −1

])[
m

n

]
=

[
0

0

]

⇒
[
r − 1 1

−1 r − 1

][
m

n

]
=

[
0

0

]
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Simultaneous Equations Two variable phase diagrams

⇒
∣∣∣∣∣
r − 1 1

−1 r − 1

∣∣∣∣∣ = 0 = r2 − 2r + 2

⇒ r1 = 1 + i,

[
i 1

−1 i

][
m

n

]
=

[
0

0

]
⇒ m1 : n1 = 1 : −i

r2 = 1− i,
[
−i 1

−1 −i

][
m

n

]
=

[
0

0

]
⇒ m2 : n2 = 1 : i

⇒
[
xc

yc

]
=

[
A1e

(1+i)t +A2e
(1−i)t

−A1ie
(1+i)t +A2ie

(1−i)t

]

= et

[
A1(cos t+ i sin t) +A2(cos t− i sin t)

−A1i(cos t+ i sin t) +A2i(cos t− i sin t)

]

= et

[
(A1 +A2) cos t+ (A1 −A2)i sin t

−(A1 −A2)i cos t+ (A1 +A2) sin t

]
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Simultaneous Equations Two variable phase diagrams

⇒
[
x(t)

y(t)

]
=

[
et(A5 cos t+ A6 sin t)− 3

et(−A6 cos t+ A5 sin t)− 1

]

• x′ = x− y + 2, y′ = x+ y + 4

• (−2.9,−1) • (−3.1,−1)

-4

0

-5 -1

-50

50

-50 50

-2500

2500

-2000 500
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Simultaneous Equations Two variable phase diagrams

Six Types of Equilibrium

Given the auxiliary equation ar2 + br + c = 0, one may determine the

type of equilibrium with information from

the discriminant: D = b2 − 4ac

the sum of roots: r1 + r2 = −b/a
the product of roots: r1r2 = c/a

D ≥ 0 D < 0
real conjugate complex

r1 + r2 > 0 r1r2 > 0 r1 + r2 > 0

unstable node unstable focus

r1 + r2 < 0 r1r2 > 0 r1 + r2 < 0

stable node stable focus

r1 + r2 T 0 r1r2 < 0 r1 + r2 = 0

saddle point vortex
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Simultaneous Equations Two variable phase diagrams

Linearization of a Nonlinear System

Given the autonomous system x′ = f(x, y) and y′ = g(x, y), an

equilibrium point (x, y) must satisfy f(x, y) = g(x, y) = 0.

The 1st-degree (linear) Taylor expansion around (x, y) gives

x′ = f(x, y) = f(x, y) + fx(x, y)(x− x) + fy(x, y)(y − y)

y′ = g(x, y) = g(x, y) + gx(x, y)(x− x) + gy(x, y)(y − y)

Or
x′ − fx(x, y)x− fy(x, y)y = −fx(x, y)x− fy(x, y)y

y′ − gx(x, y)x− gy(x, y)y = −gx(x, y)x− gy(x, y)y

⇒ the reduced equations in matrix notation
[
x′

y′

]
−
[
fx fy

gx gy

]

(x,y)

[
x

y

]
=

[
0

0

]
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Simultaneous Equations Two variable phase diagrams

Local Stability Analysis

The auxiliary equation

∣∣∣∣∣
r − fx −fy
−gx r − gy

∣∣∣∣∣ = r2 − (fx + gy)r + (fxgy − fygx) = 0

Denote

JE =

[
fx fy

gx gy

]

(x,y)

then

r1 + r2 = tr(JE)

r1r2 = det(JE)

D = tr(JE)2 − 4 · det(JE)
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Simultaneous Equations Two variable phase diagrams

Local Stability Analysis

ex:
x′ = xy − 2

y′ = 2x− y
ex:

x′ = x2 − y
y′ = 1− y

ex:
x′ = x− y + 2

y′ = x+ y + 4
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Optimal Control Theory Basic Concepts

Optimal Control Theory

t = 0 −→ t = T or t =∞
initial time terminal time

The solution for any control variable:

a single value −→ a complete time path
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Optimal Control Theory Formula Derivation

Define u(t) as a control variable, y(t) as a state variable, and

F (t, y(t), u(t)) as an instantaneous utility function.

⇒ Max

∫ T

0

F (t, y, u) dt

s.t. ẏ = f(t, y, u) + other conditions

Terminal Condition:

y(T ) exp[−r(T ) · T ] ≥ 0

where r(t) is the average discount rate that between dates 0 and

t.
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Optimal Control Theory Formula Derivation

L =

∫ T

0

F (t, y, u) dt+

∫ T

0

[λ(t) · (f(t, y, u)− ẏ)] dt+ µ · y(T ) exp[−r(T ) · T ]

=

∫ T

0

[F (t, y, u) + λ(t)f(t, y, u)] dt−
∫ T

0

λ(t) ẏ dt+ µ · y(T ) exp[−r(T ) · T ]

integration by parts

∫ T

0

λ dy = λy
∣∣∣
T

0
−
∫ T

0

y dλ

=

∫ T

0

H(t, y, u, λ) dt+

∫ T

0

dλ

dt
y dt+ λ(0)y(0)− λ(T )y(T )

+ µ · y(T ) exp[−r(T ) · T ]

=

∫ T

0

[
H(t, y, u, λ) +

dλ

dt
y

]
dt+ λ(0)y(0)− λ(T )y(T )

+ µ · y(T ) exp[−r(T ) · T ]
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Optimal Control Theory Formula Derivation

Define (Hamiltonian function)

H(t, y, u, λ) = F (t, y, u) + λ(t)f(t, y, u)

Let ũ(t) and ỹ(t) be the optimal time paths for u and y.

Now, perturbing ũ(t) and ỹ(t) by arbitrary perturbation function p1(t)

and p2(t), and then get corresponding neighborhood paths:

u(t) = ũ(t) + ε · p1(t)

y(t) = ỹ(t) + ε · p2(t)

y(T ) = ỹ(T ) + ε · p2(T )

=⇒ ∂L
∂ε

∣∣∣
ε=0

= 0
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Optimal Control Theory Formula Derivation

∂L
∂ε

=
∂

∂ε

{∫ T

0

[
H(t, y, u, λ) +

dλ

dt
y

]
dt+

(
µ exp[−r(T ) · T ]− λ(T )

)
y(T )

}

=

∫ T

0

[
∂H

∂ε
+
dλ

dt

∂y

∂ε

]
dt+

(
µ exp[−r(T ) · T ]− λ(T )

)∂y(T )

∂ε

where
∂H

∂ε
=
∂H

∂u
p1(t) +

∂H

∂y
p2(t)

∂y

∂ε
= p2(t) and

∂y(T )

∂ε
= p2(T )

=

∫ T

0

[
∂H

∂u
p1(t) +

(
∂H

∂y
+ λ̇

)
p2(t)

]
dt

+
(
µ exp[−r(T ) · T ]− λ(T )

)
p2(T ) = 0
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Optimal Control Theory Formula Derivation

Max

∫ T

0

F (t, y, u) dt

s.t. ẏ = f(t, y, u) + other conditions

=⇒ H(t, y, u, λ) = F (t, y, u) + λ(t)f(t, y, u)

(1) Pontryagin’s maximum principle
∂H
∂u

= 0 or H(t, y, u∗, λ) ≥ H(t, y, u, λ)

(2) state equation

ẏ = ∂H
∂λ

= f(t, y, u)

(3) costate equation

λ̇ = −∂H
∂y

(4) transversality condition

λ(T ) ≥ 0
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Optimal Control Theory Examples

Example 1

Find the shortest distance.

0

A

y

T t

dh

dt

dy
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Optimal Control Theory Examples

Example 2

Max

∫ 1

0

(y − u2) dt

s.t. ẏ = u, y(0) = 5, y(1) free

Example 3

Max

∫ 2

0

(2y − 3u) dt

s.t. ẏ = y + u, y(0) = 4, y(2) free, u(t) ∈ [0, 2]
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Optimal Control Theory Neoclassical Optimal Growth Model

Neoclassical Optimal Growth Model

Y = Y (K,L) is a CRTS production function,

YL > 0, YK > 0, YLL < 0, YKK < 0

K̇ = I − δK,
I = S = Y − C
⇒ k̇ = y − c− (n+ δ)k = φ(k)− c− (n+ δ)k

U(c) denotes the social welfare function

U ′(c) > 0, U ′′(c) < 0, limc→0 U
′(c) =∞, limc→∞ U ′(c) = 0

⇒ V =

∫ ∞

0

U(c)e−ρtL0e
nt dt =

∫ ∞

0

U(c)e−(ρ−n)t dt
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Optimal Control Theory Neoclassical Optimal Growth Model

Max

∫ ∞

0

U(c)e−(ρ−n)t dt

s.t. k̇ = φ(k)− c− (n+ δ)k

and k(0) = k0, 0 ≤ c(t) ≤ φ(k)

⇒ H = U(c)e−(ρ−n)t + λ

[
φ(k)− c− (n+ δ)k

]

(1) ∂H
∂c

= U ′(c)e−(ρ−n)t − λ = 0

(2) k̇ = ∂H
∂λ

= φ(k)− c− (n+ δ)k

(3) λ̇ = −∂H
∂k

= −λ
[
φ′(k)− (n+ δ)

]
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