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Fundamentals

Fundamentals

refer to textbook

Ch.2 Economic Models
Ch.3 Equilibrium Analysis in Economics

Others: p.82-84, p.230-231, p.318-320, p.327-330,
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IEINECELENIEIEE  basic definitions

P = @ (= not @ = not P) can be read as

o if P then )
e P implies )
e Ponlyif @
e P is a sufficient condition for ()

@ () is a necessary condition for P
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Fundamentals basic definitions

ex: P: George is Mary's father.

Q: George is a male.

ex: P: All students in this class are undergraduates.

Q: No one in this class is under 10 years old.
ex: Prove that v/2 is an irrational number.

ex: If you believe in me with all your heart,
you will be able to walk through that wall.
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IEINECELENIEIEE  basic definitions

P& Q (i.e. P= @ and Q = P) can be read as

e P if and only if Q
e P is equivalent to ()
@ P is a necessary and sufficient condition for ()

@ P implies and is implied by )
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Fundamentals basic definitions

@ A variable is something whose magnitude can change.
@ A constant is a magnitude that does not change.
@ A parameter is a constant that is variable.

ex: QF =25—2Px + Py + 0.2M (a demand function)

U(X,Y) = X" (an utility function)
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Fundamentals basic definitions

@ Endogenous variables are those whose solution values we seek

from the model.

e Exogenous variables are determined by forces external to the
model and whose magnitudes are accepted as given data only.

S

Px X+P-Y=M

atB Py [ i U=XY?

Q Py
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Fundamentals basic definitions

@ A definitional equation sets up an identity between two
alternate expressions that have exactly the same meaning.

exxmT=R—-C, 2"=xzXxXx- X x(nterms)

@ A behavioral equation specifies the manner in which a variable
behaves in response to changes in other variables.
ex: C=0Q?*+2Q +35 Y =K"L0T

@ A conditional equation states a requirement to be satisfied.

ex:Qyu=0Q,, I=S5
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Sets

@ A set is a collection of distinct items thought of as a whole, and
these items are called the elements of the set.

ex:  production possibility set budget set

Y Y
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Two ways of writing a set:

e Enumeration
ex: A=1{1,2,3,4} ={2,4,3,1}
= 3€A 5¢A
Z,=1{1,2,3,4,...}
e Description

ex: B={zlx<4doecZ,}={re€Z;: :x<4}
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@ X is a subset of Y if and only if all the elements of set X are
also elements of set Y, and we write

XCY
where C is the set-inclusion relation.

@ Z is not a subset of Y iff there exists at least one = such that
r € Z butx ¢Y and we write

Z¢Y
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Venn Diagram

Note that there are no elements in the area filled by slanted lines.
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@ The empty set (or the null set) is the set with no elements.
The empty set is always written ¢ or { }.

@ ¢ is a subset of any set.

proof:

If ¢ Q A, then there must be at least one element x such
that = € ¢ but = ¢ A. However, there is no element in ¢ by
definintion. Therefore, ¢ C A.
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@ If there are m elements in set A, then there are 2™ subsets

contained in set A.

ex: A={1,2,3}
subsets of A:¢, {1}, {2}, {3}, {1,2},{1,3},{2,3},{1,2,3}

@ The power set of a set X is the set of all subsets of X, and is

written P(X). Thatis, P(X)={A: AC X}.

ex: A={1}
P(A) = {0, {1}}
P(P(A) = {o, {0}, {{1}}. {0, {1}}}
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@ X is a proper subset of YV iff all the elements in set X are in set

Y, but not all the elements of Y are in X, and we write

XcYy iff XCY but YZX
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@ Two sets X and Y are equal iff they contain exactly the same

elements, and we write

X=Y iff XCVY and Y CX
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@ The union of two sets A and B is the set of elements in one or

other of the sets. We write

AUB={zx:xz € Aorz € B}
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@ The intersection of two sets X and Y is the set of elements that
are in both X and Y. We write

XNY={zr:zeXandzxeY}
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Sets

@ The complement of a set X is the set of elements of the
universal set U that are not elements of X, and it is written X.
Thus

X={zeU:x¢ X}
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DeMorgan’s Rule
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Laws of Set Operations
e commutative law AUB=BUA
ANB=BNA

@ associative law AU (BUC)=(AUuB)UC
AN(BnC)=(AnB)NnC
AUu(BnNnC)# (AuB)nC

e distributive law AU (BNC)=(AUB)N(AUC)
AN(BUC)=(ANB)U(ANC)
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@ The relative difference of X and Y, denoted X — Y, is the set
of elements of X that are not also in YV

X-Y={zeU:ze€Xandx ¢V}
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@ A partition of the universal set U is a collection of disjoint
subsets of U, the union of which is U. Thus, if we have n subsets
X;,1=1,---,n, such that

XZmX]:¢7 Zaj:1a7n7 Z#]
and

then these n subsets form a partition of U.

X
X5

XQ Xy

X
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ex: Show that for any X C U, {X, X} is a partition of U.

ex: Consider the collection of subsets of Z, defined as follows:

Does the collection of these X; form a partition of Z,7

Solution
Xy ={re€Z;:0<x<10}
Xo={zr €Z;:10 <x <20}
Xs={r€Z;:20 <x <30}
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Complex Numbers (C)

/\

Real Numbers (R) Imaginary Numbers
/\
Rational Numbers Irrational Numbers
/\
Integers (Z) Nonintegers
e
Positive Integers (Z.) Zero Negative Integers
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@ The set R, C R consists of the strictly positive real numbers
with the characteristics that

(i) Ry, is closed under addition and multiplication.

(i) For any a € R, exactly one of the following is true:
aeR,y or a=0 o —acRi,

@ Theset R, =R, ; U{0} is the set of nonnegative real numbers.
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Bounded and Closed Sets

@ Aset S C R is bounded above if there exists b € R such that
forall x € S, © < b; b is then called an upper bound of S.

@ Aset S C R is bounded below if there exists a € R such that
forall z € S, x > a; a is then called a lower bound of S.

ay a9 bl b2 bg
e -
S
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@ The supremum of a set S, written sup S, has the properties:

(i) x <sup SforallzeS.

(ii) If bis an upper bound of S, then sup S < b.

@ The infimum of a set S, written inf S, has the properties:
(i) x> inf Sforallz e S.

(i) If a is a lower bound of S, then a < inf S.
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Conclusions

@ If the sup or the inf of a subset of R exists, then it is unique.

@ Every nonempty subset of R that has an upper bound has a

supremum (least upper bound) in R.

@ Every nonempty subset of R that has a lower bound has an
infimum (greatest lower bound) in R.

@ If sup X € X, then sup X is called the maximum of X. In the
same way, if inf X € X, then inf X is called the minimum of X.
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An interval is bounded if it is impossible to go off to infinity while

remaining inside it.

@ unbounded above
la,00) ={z €R:z>a}
(a,00) ={zx €R:2 > a}

@ unbounded below
(—oo,b) ={reR:z <b}
(—o0,b) ={r e R:z < b}
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e A boundary point of an interval, such as [a, )], is a point x( that
every interval (zo — €, x9 + €) around it, however small, must

contain points that are in [a, b] and points that are not.

@ For an interior point of [a,b], it is always possible to find an

interval I.(zo) that lies entirely in [a, b].

| | | \\H R

x9—€ Lo To+e€ b—e b+e

A
\ 4
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A closed interval contains all (if any) its boundary points.
o closed interval : [a,b) ={xr € R:a <z < b}

e half-open interval : [a,b) ={z €R :a <z < b}
(a,b) ={r €R:a <z <0b}

e open interval : (a,b) ={z €R:a <z <b}
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A compact interval is defined as an interval that is both closed and
bounded.

ex: [2,5]  closed and bounded
ex: [2,5) half-open and bounded
ex: [2,00)  closed and unbounded above

ex: (—o0,5) open and unbounded below
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Euclidean Space

@ ordered pairs  (a,b)

Note: (a,b) # (b,a) unless a = b
@ ordered triples  (a,b,c)
e ordered quadruple (a,b,c,d)

e ordered quintuple (a,b,c,d, e)
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The cartesian product of two sets X and Y, written X ® Y, is the
set of ordered pairs formed by taking in turn each element in X and
associating with it each element in Y

X®Y ={(a,b):a€e X and beY}

ex: X ={1,2,3}, Y ={a,b}

XY ={(1,a),(1,b),(2,a),(2,0),(3,a),(3,0)}
ex: ROR=R? = {(z,y): z € R,y € R}
ex: ROIRQR=R3 = {(z,9,2) : 2 € R,y € R,z € R}
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Sets
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Nl .clidean space

Given points a = (ay,...,ay) and b = (by,...,by) in RY,
N > 1, the Euclidean distance between them is

ex: a=ay,b=b,

d(a, b) = 1/ (CL1 — b1)2 = |(11 — b1|

ex: a = (ar,as),b = (b1,b2),
4(0.5) = \/lor — B F (@~ o]
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@ An e-neighborhood of a point x5 € RY is given by the set
N.(x0) = {x € RY : d(x0,x) < ¢,¢ € R, }. Simply, N.(xo) is
the set of points lying within a distance € of xg.

e A boundary point of a set X C R" is a point x( such that
every e-neighborhood N, (x() contains points that are in and

points that are not in X.

@ An interior point of a set X C R" is a point xq € X for which
there exists an € such that N.(xq) C X.
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e Aset X C RY is open if, for every x € X, there exists an ¢ such
that N.(x) C X. That is, an open set is composed of its interior
points only.

e A set X C RY is closed if all the boundary points of X are also
in the set X.

Note: Points in the broken part on the circumference of X (the yellow
disk) do not belong to X, while points in the solid part do.
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@ The interior of a set X C R" is the open set
Int X = {x € R" : x is an interior point of X'}

(the disk without its circumference)

@ The closure of X is the closed set
Cl X :RN\Int(RN\X)

(the disk with its entire circumference)

@ The boundary of X is the closed set
Bdry X = Cl X \ Int X
= {x’ € R" : X' is a boundary point of X'}

(the entire circumference only)
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o Aset X C RY is open iff its complement X C R” is a closed
set.

Proof
(i) Suppose that X is not a closed set, then at least one of its
boundary points, say x, is not in X. That is, x ¢ X and thus
x e X.

(i) Because x is a boundary point of X, every e-neighborhood
N.(x) contains points that are in and points that are not in X.

Hence, x is also a boundary point of X.

From (i) and (ii), X is not an open set.
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e RY C RY¥ is both closed and open.

Proof

(i) For any point x € RY, we can find an € > 0 such that
N.(x) C RN, Hence, all points in RY are its interior points and

then RY is an open set.

(ii) Since all points in RY are interior points, all (if any) its boundary
points will be in its complement ¢. However, ¢ C R and then

all its boundary points are also in RY. Thus, R is a closed set.

@ ¢ is both closed and open.

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 45 / 423



@ The intersection of two open sets is open.

Proof
Assume that X, Y C R" are open and Z = X NY.

(i) If Z = ¢, then it is an open set.

(ii) If Z # ¢, then for any zy € Z, we will have zy € X and z, € Y.
Since X and Y are open, there must exist €, > 0 and ¢, > 0 such
that N, (zo) C X and N (z9) C Y. Let € = min{e,, ¢},

N(z9) C X and N.(zo) C Y and thus N.(zo) C Z will hold.

From (i) and (ii), Z is an open set.
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@ The union of two closed sets is closed.

Proof:
Assume that X, Y C R are closed and Z = X UY.

(i) X,Y are open.
(i) Z=XnNY isopen.
(i) Z is closed.

@ The union of two open sets is open.

@ The intersection of two closed sets is closed.
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e Aset X C R" is bounded if, for every x, € X, there exists a
finite € < oo such that X C N (xo).

@ The intersection of two bounded sets is bounded.

Proof
Assume that X, Y C R¥ are bounded and Z = X NY. For any
zo € Z, we will have zg € X. Since X is bounded, there must
exists 0 < € < oo such that Z C X C N.(z¢). Hence Z is
bounded.

@ The union of two bounded sets is bounded.
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@ Consider a parameterized maximization problem of the form
M(a) = max f(x,a) suchthat x € G(a).

e Existence of an optimum
If the constraint set G(a) is nonempty and compact, and the
function f is continuous, then there exists a solution x* to this

maximization problem.

@ Uniqueness of optimum
If the function f is strictly concave and the constraint set is

convex, then a solution, should it exist, is unique.
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Convex Sets

BC=C-B
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Convex Sets

B B+ 5BC
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Convex Sets

B+1.2BC
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Convex Sets

B —-05BC
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Convex Sets

any point on BC = B+ ABC
= B+ ANC—-B)=(1-\NB+XC
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Convex Combination
@ Given two points
x = (2], 2h, - ,2y)T € RY
and
X' = (2, 0%, o) € RY,
their convex combination is the set of points X € R for

some A € [0, 1], given by

X = X+ (1-1x"
= [/\xll-i_(l_)‘)x/l,""7/\1‘/]\1"'(1_)‘)1‘/](/]71
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e Aset X C RY is convex if for every pair of points x’,x" € X,
and any A € [0, 1], the point

X=X+ (1 - \)x"
also belongs to the set X.

o A set X C RY is strictly convex, if for every pair of points
x',x" € X, x' #x", and every A € (0,1), we have that X is an
interior point of X, where

X=X+ (1 - N)x"

@ The intersection of two convex sets is also convex.

@ The sum of two convex sets is also convex.
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ex:  production possibility set budget set
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Sets
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Functions
@ Given two sets X and Y, a function (or a mapping /
transformation) from X to Y is a rule that associates with each
element of X, one and only one element of Y.
f:X—=Y or y=f(x), reX
where x is referred to as the independent variable and y as the

dependent variable.
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@ The set X is called the domain of the function, Y is called the
codomain, and the set of elements in Y associated with the
elements of X by the function is called the range of the function.

@ The range of a function can be written as the image set.

fX)={yeY:y=[f(z), e X}

o If f(X) CY, then we say f maps X into Y, while if f(X) =Y,
then we say that f maps X onto Y.

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 60 / 423



@ If we focus on cases in which Y =R and X C RN, N > 1, then
f X — Y will be referred to as a real-valued function.

ex:t y=f(r)=2+3x, z€R
y = h(ry,2) = 21%25°, (21, 72) € Ri

y=g(z,z,w) =sinz + 2z — 3w?, (r,z,w) € R
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Functions

Y

Mgy

Y

> X
W -

O 0]
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@ The inverse function of y = f(x) is to invert this mapping and

write x as a function of y, written as

z=f"(y)

@ This can only be done if f is one-to-one (into or onto).
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@ The composite mapping of two mappings f : X — Y and
g:Y — Z is defined as

gof:X—2 o  z=g[f(x)]

where f(X) CY.
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Types of Functions

e Polynomial
y=f(2) = apa™ + ap_12" ' + ... + a1z + apz’
ex: y = 3 (constant) ex: y = 2z + 1 (linear)

ex: y = 2% + 2z + 5 (quadratic)  ex: y = 2 + 1 (cubic)

e Rational = a ratio of two polynomials in x

x—1

A S W
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@ Algebraic = functions expressed in terms of polynomials and/or

roots of polynomials

ex:y=+vr2+3

e Nonalgebraic(Transcedential)
ex: y = 3 (exponential)
ex: y = log, x (logarithmic)

ex: y = sinx (trigonometric)
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Functions Concave and Quasiconcave functions

Concave and Quasiconcave functions
@ Let X C RY be a convex set and f : X — R. If for any two
points x’,x” € X and \ € [0, 1],
fER) A+ =NfE)=f

where X = Ax" + (1 — A\)x”, then f is said to be a concave
function. That is, the line segment connecting points A and B

lies on or below the surface.
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Functions

7

8
g
8
S
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X

@ The function f is strictly concave if the strict inequality holds
when x’' # x” and A € (0,1), i.e., AB lies entirely below the
surface except for A and B.
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Functions
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@ The function f is convex if

JE) SME)+1-NfE")=7F

where X = Ax’ + (1 — A\)x” and A € [0, 1]. That is, the line
segment connecting points A and B lies on or above the surface.

Yy
y=[f(x)
f(=") 5
T :
1) 2,
f@) e et 5
© ' z 2 i x
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@ The function f is strictly convex if the strict inequality holds
when x’ # x” and A € (0, 1), i.e., AB lies entirely above the
surface except for A and B.

fley) = 2* + ¢
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Functions

y = f(x)

O >
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e X C RY, suppose that f: X — R and g: X — R are two
concave functions. Show that f + ¢ is concave.

Proof
Let x', X" € X, X = A%’ + (1 — \)x” and \ € [0, 1]. Because
h(X) = f(X) +9(%)

> V(%) + (1= 0 fx")] + [Ag(x) + (1 = N)g(x")]
= Af(x') + g(x)] + (1 = N[ (x") + g(x")]

= Mi(x') + (1 = Nh(x"),
then the sum of two concave functions is also concave.
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e XCRM iff: X —-Randg:X — R are two concave
functions and at least one of them is strictly concave, then
f + g is strictly concave.

@ The sum of two convex functions is also convex. And if at least

one of them is strictly convex, their sum will be strictly convex.

@ The negative of a (strictly) concave function is (strictly) convex.
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@ A level set of the function y = f(x) is the set
L={xeR": f(x)=c}
for some given number ¢ € R

@ The better set of the point xg is

B(xo) = {x: f(x) = f(x0)}

Y y = f(x)
° L(C) = {SL‘1,£C2,J,‘3}

e B(z1) = B(xz) = B(x3)

0] / x| T T3 T
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Yy
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Functions

ylk

Co
B o
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e X C RV, suppose that f: X — R is a concave function. Show
that, for every point xo € X, the better set B(xy) is convex.

Proof
Let X', x"” € B(xp), then f(x') > f(x¢) and f(x") > f(xo).
Since f is a concave function, for any A € [0, 1],

fE = M)+ (1= 2fE)
> Af(%0) + (1= A)f(x0) = f(x0).

Thus, X € B(xg). That is, B(xg) is a convex set.
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@ The better set is also called the upper contour set.

@ The worse set (or the lower contour set) of the point xq is
Wi(xo) = {x: f(x) < f(x0)}

o If X CRY, and f: X — R is a convex function, then, for every

point xg € X, the worse set W (x) is convex.
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e f is (strictly) quasiconcave if and only if

f(X) = (>)Min{f(x'), f(x")}
forall x',x" € X and A € [0,1]. (xX' #x", Ae(0,1))

y Y Yy

e fis (strictly) quasiconvex if and only if

f(®) < (OMax{f(x), f(x")}
forall x',x”" € X and A € [0,1]. (x' #x", Ae(0,1))
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@ Let X C RY be a convex set, f: X — R. Show that f is a
quasiconcave function iff, for every point xy € X, the better set

B(xo) is convex.
That is,
x' € B(xo) and X" € B(xg) = X € B(xq)
or
f(x') = f(xo) and f(x") > f(x0) = [(X)= f(x0)

for any x’,x” € X and X\ € [0, 1].
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Proof
(i) If f is quasiconcave, then B(xg) is convex.

Given x', x" € B(xg) so that f(x') > f(x0) and f(x") > f(xo),
since f is quasiconcave, for any A € [0, 1],

f(X) = Min{f(x'), f(x")} = f(x0)

= X € B(xg). Thatis, B(xp) is convex.

(i) If B(xg) is convex, then f is quasiconcave.
Assume that f(x') > f(x") so that X/, x” € B(x").
Since B(x") is a convex set, X € B(x")

= f(X) 2 f(x")= Min{f(x), f(x")}

= f is quasiconcave.
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e X CRY, f: X — R, then the hypograph of f is a set defined
as

HGy={(x,y):x€ X,y € R,y < f(x)}
and the epigraph as
EGy={(x,y):x€ X,y e Ry > f(x)}.

x
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e If and only if f is a concave function, its hypograph is convex.

Proof:

(i) By definition, (x', f(x')) € HGf and (X", f(x")) € HGj.
Therefore, for A € [0, 1], (X, f) € HG; since HG; is convex.

= f < f(X) by definition of HG. Thus, f is a concave function.

(ii) Assume that (x’,4') and

(x” € HGy, thus ¢ < f(x') and
y'<f). = psf<

//)
f(x)

Y

/]\

concave function
= (i, @) S HGf

= HGy is a convex set.
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Linear Algebra

Linear Algebra

refer to textbook

Ch.4 Linear Models and Matrix Algebra

Ch.5 Linear Models and Matrix Algebra (continued)
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Linear Algebra basic concepts

@ A matrix is a rectangular array of numbers enclosed in

parentheses. It is conventionally denoted by a capital letter.

5 3 10 12 ]
6 5 9 15
1 2
A= - . B=|7 5 8 14
17 13 22 31
| 32 17 35 44
2% 2 Hhx4

@ The number of rows and the number of columns determine the
dimension (the order) of the matrix.
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Linear Algebra

@ A matrix A of order m x n can be explicitly written as

A = [aj], i=1~m, j=1~n

apy a0 Qip

az1 Qg2 -+ Q2p

mxn
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Linear Algebra basic concepts

@ An array that consists of only one row or one column is known as

a vector.
ex: [ 5 3 5 4 } row matrix (row vector)
1x4
-1 _
ex: 5 column matrix (column vector)
2x1
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Linear Algebra basic concepts

@ Two matrices (say A =[a;; |, B=1]b; |) are equal (A = B)
iff (i) they have the same dimension and
(ii) all the corresponding elements are equal (a;; = b;;, V i, 7).

3 2] _[3 y]
I-+-y 1 2%X2 2 1 2%2

=y=2 x=0.

3 4 =z 3 w 1
ex: =
2 5 7 z by
2x3 2x3

>zc=1y=7 2z=2, w=4.
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Linear Algebra basic concepts

@ A matrix that has the same number of rows and columns is called
a square matrix.

ex:A:12 03:341 X
2%x2

3 1 2 5 7
2x3

€11 C12 (13 O
C= Co1 Co2 C23

C C C

31 G2 €33 |4 4
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Linear Algebra basic concepts

@ Any square matrix that has only nonzero entries on the main

diagonal and zeros everywhere else is known as a diagonal

matrix.

5 0 1 00
ex:Pz[O?)]7 Q=10 30
00 5

1 0 0
I3=1010 (identity matrix)

0 01
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Linear Algebra basic concepts

@ A matrix with all its entries being zero is known as the null

matrix.
ex: _ i
0 0 0
0o =
2x3 O O O
[0 0 0]
O3x3=10 0 O
| 0 0 0|
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Linear Algebra basic concepts

e The transpose matrix, AT (or A’), is the original matrix A with

its rows and columns interchanged.

1 2
2 5 7
2x3

wr-[117]

ex:

W N =
- Ot N

3x2
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Linear Algebra basic concepts

@ A matrix A that is equal to its transpose A7 is called a

symmetric matrix.
(5 1
9 3

L 2X2

ex: A=

ex: B =

ex: =13 2 8

P. C. Roger Cheng (Econ, NCU)
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3x3
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X pro
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Linear Algebra basic concepts

@ The sum of two matrices is a matrix, the elements of which are

the sums of the corresponding elements of the matrices.

[aij]—k[sz ] :[Cij ], where Cij :aij+bij7 \V/’L,j

4 9 20 6 9
ex: + =
2 1 0o 7 2 8
1 21 0 3 5
ex: + =
3 1 2 1 2 -1
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Linear Algebra basic concepts

@ Two matrices are conformable for addition if they have the same

dimension. On the other hand, two matrices are not

conformable for addition if their dimensions are different.

P. C. Roger Cheng (Econ, NCU)

1 2
ex: +

3 1

3 4 1
+

6 5 3

o

4 0

0 2
-5 8
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Linear Algebra basic concepts

@ The sum of a matrix A and a (conformable) null matrix is A itself.

[ 4 9 0 0 49
ex: + =
2 1 0 0 2 1

(1 2 1 00 0 121
ex: + —
312] [000] [312]
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Linear Algebra basic concepts

@ The transpose of a sum of matrices is the sum of the transposes:

(A+B)T = AT + BT

T T r A
4 9 2 0 4 2 0
ex: + = +
2 1 07 9 07
6
9

2
1
- T
B 21 [69
B S| |2 8
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Linear Algebra basic concepts

@ Scalar multiplication is carried out by multiplying each element

of the matrix by the scalar.

klaij | = [ kay | =[ay |k
ex:lO[l 3]: [10 30]: [1 3]10
5 7 50 70 5 7

ol 3] [2]- [
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Linear Algebra basic concepts

@ Matrix subtraction can be defined by scalar multiplication and

addition.
A-B=A+(-1)B

12 2 -5
3 1]+<_1)[4 o]

RN
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Linear Algebra basic concepts

@ Two matrices A and B of dimensions m x n and n X ¢

respectively are conformable to form the product matrix

C’m><q = AanBana

since the number of columns of the lead matrix A is equal to the
number of rows of the lag matrix B.

@ The ijth element of the product matrix, c;;, is obtained by
multiplying the elements of the ith row of A by the corresponding
elements of the jth column of B and adding the resulting
products.
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Linear Algebra basic concepts

® [ ik Jmxn [ bkj Inxq = [ Cij lmxq, Where ¢;; = Epaipby;, Vi, j

13 . [ 1(5) +3(9) 1(1) +3(3)
ex: | 2 8 [ 0 3 ] =1 2(5)+8(9) 2(1)+8(3)
40, 2x2 | 4(5)+0(9) 4(1) +0(3)

[ 32 10

= | 82 26

20 4

3%x2
[2 4] [122] [14820]
ex: =
1 2 31 4 7 4 10
2%X2 2%x3 2%x3
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Linear Algebra basic concepts

@ The transpose matrix of the product matrix AB, where A and B
are two conformable matrices, is defined as the product of the

transposes, with the order of the multiplication reversed.

(AB)T = BT A"

(ABC)' = CT(AB)T = 0" BT AT

(ABCD)" = D'CTBT A"
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Linear Algebra basic concepts

T - T
13 32 10
5 1
2 8 — | 82 26
9 3
40 | 20 4
32 82 20
|10 26 4
137" -
s 1172 s 9][1 24
9 3 280 T 113380
40 -
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Linear Algebra basic concepts

Q: AB=BA?

A: In general, the product matrix AB (premultiplying B by A) does
not equal the product matrix BA (postmultiplying B by A).

(i) AB or BA may not be well defined.

(ii) Even if both AB and BA are well defined, they are not equal in
general.
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Linear Algebra basic concepts

2 4 1 2 2
1 B:
12] [314]
2Xx2 2x3

14 8 20
7 4 10

AB =

] . while BA is not well defined.
2%

@ Both of the product matrices AB and B A are well defined only if
A and B are square matrices of the same order or for A of

dimension m x n with B of dimension n X m.
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Linear Algebra basic concepts

ex: A= 2 4 , B= L2
1 3 2 0
AB = 104 , BA= 410 = AB # BA
7T 2 4 8
5 1 0 13
ex: A= , B=11 1
2 1 -1
0 2
21 16 267 =3
AB = o s , BA=| 7 2 -1 = AB # BA
4 —2
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Linear Algebra basic concepts

@ The multiplication of any matrix and a (conformable) null matrix

is a null matrix.

2 4 000 000
ex: =
1 2 000 000

@ The multiplication of any matrix and a (conformable) identity
matrix is the matrix itself.

=[]l )=
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Linear Algebra basic concepts

Q: AB=0 = A=0orB=0"7

9 4 2 4] oo

1 2 1 -2 |00

Q:cb=CE = D=E7

11| |5 8| |23 92 1
1 20 |15 24| |69 3 2

A: Negative!

A: Negative!

2 3
6 9
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Linear Algebra basic concepts

@ The matrix A" is the product matrix obtained by multiplying the
square matrix A by itself n times.

@ A square matrix A of any order is idempotent if
A=A2=A=...
where A2 = AA, A3 = AAA, etc.
1/6 —1/3 1/6

ex: A=|-1/3 2/3 -1/3
1/6 —1/3  1/6
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Linear Algebra basic concepts

@ The trace of a square matrix A is given by the sum of the

elements of the main diagonal. In other words, if A is n x n, then

the trace is defined as

trace(A,) = a11 + asa + -+ + Gy
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Linear Algebra basic concepts

@ For two matrices A and B of dimensions m x n and n x m

respectively, we have that AB is m x m and BA isn x n and

trace(AB) = trace(BA)

proof:

Let C = AB and D = BA.

trace(AB) Zc” = Z Zaw i

=1 7j=1

n

Z Z bjiaij = Z djj = trace(BA)
j=1 \i=1 j=1
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Linear Algebra basic concepts

@ The inverse matrix A~! of a square matrix A of order n is the

matrix that satisfies the condition that
AA = A"tA=1,

where I, is the identity matrix of order n.

@ Any matrix A for which A~! does not exist is known as a

singular matrix.

@ The matrix A for which A~! exists is known as a nonsingular

matrix.
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Linear Algebra basic concepts

Properties of the Inverse

@ The inverse of an inverse matrix reproduces the original matrix

(A7) =4

@ The inverse of a matrix is unique

e (AB)™' = B7'A~!, provided that (i) A and B are of the same
order, and (i) A~! and B~! both exist.

@ The inverse of the transpose equals the transpose of the inverse
(AT)fl — (A71>T
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Linear Algebra basic concepts

e The inverse of an inverse matrix reproduces the

original matrix

(A7) =4
proof:
Let B=(A"1)"1.
cATTB=AYATY) =1
= AATIB = Al
.B=A Done!
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Linear Algebra basic concepts

e The inverse of a matrix is unique
proof:
Assume that AB = 1.
cATTAB = A7
= B=A"
.". Any conformable matrix B satisfying AB = I must
be A~

Done!
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Linear Algebra basic concepts

o (AB)™!' = B71A™!, provided that (i) A and B are of
the same order, and (ii) A~! and B™! both exist.

proof:

(AB)"YAB) =1
= (AB)'ABB'A ! = IBtA™!
= (AB)"l = B1A™!

Done!
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Linear Algebra basic concepts

e The inverse of the transpose equals the transpose of

the inverse
(AT = (A~)T
proof:
(AHWTAT = (AA YT =T =1
= (A™H! = (4")"

Done!
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Linear Algebra system of linear equations

For a system of linear equations,

r + 2y — 2z =
-r + y + =z = 5
dr — y + 2z = 13

there are three interesting questions:
@ Does a solution exist?
@ How many solutions are there?

@ Is there an efficient algorithm that computes actual solutions?
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(RO CETANETEM  system of linear equations

Way 1: Substitution

r + 2y — 2z
-r + Yy + =z
de — y + 2z

= r=—-2y+2z (1)

= 3y — z
-9y + 10z

= z2=3y—>5 (2¢)

=  2ly=63

= y=3, z=4, v=2

P. C. Roger Cheng (Econ, NCU)
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(RO CETANETEM  system of linear equations

Way 2: Gaussian Elimination

le + 2y — 22 = 0 (la)
-r + y + =z = 5 (2a)
e — y + 2z = 13 (3a)
=
r + 2y — 2z = 0 (la)
3y — z =5 (2b)
— 9y + 10z = 13 (3b)
=
r 4+ 2y — 2z = 0 (la)
3y — 2z = 5 (2b)

Tz = 28 (3¢)
= z=4, y=3, x =2 (back substitution)
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(RO CETANETEM  system of linear equations

Way 2’: Gauss-Jordan Elimination

r + 2y — 2z = 0 (la)

=
r + 2y 8 (1b)
3y 9 (2¢
z 4 (3d
=
x = 2 (1c)
Yy 3 (2¢
z = 4 (3d
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Linear Algebra elementary row operations

r + 2y + 3z =1
dr + 2y + 2z =1

3 2

1 2 3
[ ) ] is called the coefficient matrix of the system

1
1

] the augmented matrix.
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Linear Algebra elementary row operations

@ A row of a matrix is said to have k leading zeros if the first k
elements of the row are all zeros and the (k + 1)th element of the

row iIs not zero.

@ A matrix is in row echelon form if each row has more leading
zeros than the row preceding it.

@ The first nonzero entry in each row of a row echelon matrix is

called a pivot.

12 -2]0
0 3 —-1]5
00 7 |28
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Linear Algebra elementary row operations

e Elementary row operations:
interchange two rows of a matrix

multiply each element in a row by the same nonzero number

w o=

change a row by adding to it a multiple of another row

@ A row echelon matrix in which (1) each pivot is a 1 and (2) each
column containing a pivot contains no other nonzero entries is

said to be in reduced row echelon form.

o O =
o = O
_ o O
=W N
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BTN ECTER  systems with many or no solutions

r + 2y + 3z =1
3r + 2y + =z =1

1 2 3|1 1 2 311
3 2 171 0 —4 —-8|-2
1 2 3|1 1 0 -1,0
0 1 2]05 01 2105
r = z e .
= = infinitely many solutions!
y = 05—2z
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BTN ECTER  systems with many or no solutions

r + 3y = 1 1 3|1
3x + y =1 = 3 1|1
2 + 3y =1 2 3|1
1 3 1 1 3 1
= 0 —8|-2 = 0 11]0.25
0 —-3|-1 0 -3 -1
10 0.25
= 01 0.25 = no solution!
0 0|—-0.25
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BTN ECTER  systems with many or no solutions

r + 3y =1 1 31
v + y =1 = 3 1|1
20 + 2y = 1 2 2|1
1 3 1 1 3 1
= 0 —8|—-2 = 0 1,025
0 —4| -1 0 —4| —1
01]0.25
= 0 1]0.25 = exactly one solution!
0 0 0
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Linear Algebra systems with many or no solutions

1 ww 0 0 w 0d
B:OOOlOde
0 0 001 w 0d
0 0000 0 1|d

where w, d may be either zero or nonzero.

@ If the jth column of the row echelon matrix B contains a pivot,
then z; is called a basic variable.

o If the jth column of B does not contain a pivot, then we call z; a

free variable.
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Linear Algebra rank

@ The rank of a matrix is the number of nonzero rows in its row
echelon form.

o Let A be the coefficient matrix and A be the corresponding
augmented matrix. Then

1. rank(A4) < rank(A)
2. rank(A) < number of rows of A

3. rank(A) < # col.s of A
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Linear Algebra rank

@ A system of linear equations with coefficient matrix A and

augmented matrix A has a solution if and only if

-~

rank(A) = rank(A)

@ A system of linear equations must have either (1) no solution,

(2) one solution, or (3) infinitely many solutions.

o If a system has exactly one solution, then A has at least as

many rows(or equations) as columns(or unknowns).

# rows of A > # colsof A
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Linear Algebra rank

@ If a system has more unknowns than equations, then it must
have either no solution or infinitely many solutions.

@ If a system in which all the elements in RHS are 0, then it is

called homogeneous and must have at least one solution.

@ A homogeneous system of linear equations which has more

unknowns than equations must have infinitely many solutions.

@ A system with A will have a solution for every RHS if and only
if
rank(A) = # rows of A
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Linear Algebra rank

@ If a system has more equations than unknowns, then there exists
an RHS such that the resulting system has no solution.

@ Any system having A will have at most one solution for every
RHS if and only if

rank(A) = # col.s of A

@ A system has exactly one solution for every RHS if and only if

# rows of A = # col.s of A = rank(A)
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Linear Algebra rank

or + 2y = 3

S EFINEH
-1 —4 Y 3

dr — y + 2z = 13

r + 2y — 22 = 0

-r + y + z = 5
4 -1 2 x 13
= 1 2 =2 y | = 0
-1 1 1 z 5
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Linear Algebra rank

a1, + 12T + -+ + ATy — d1

a21T1 + A22%2 + - -+ + Ao, Ty, = do

Ap1T1 + ApaXo + « - + GppTy = dn

a1; a2 - Aip x dy
Q21 Qg2 -+ A2y X2 dy
= _ =
an1 Ap2 - Ann Tp dn
nxXn nx1 nx1
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Linear Algebra rank

Quiz

Consider the linear system of equations Ax = d.

If # equations < # unknowns, then

@ Ax = 0 has infinitely many solutions.

e for any given d, Ax = d has 0 or infinitely many solutions.

o if rank(A) = # equations, Ax = d has infinitely many solutions
for every d.
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Linear Algebra rank

Quiz

Consider the linear system of equations Ax = d.

If # equations > # unknowns, then

@ Ax = 0 has one or infinitely many solutions.

e for any given d, Ax = d has 0, 1, or infinitely many solutions.

o if rank(A) = # unknowns, Ax = d has 0 or 1 solution for every
d.
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Linear Algebra rank

Quiz

Consider the linear system of equations Ax = d.

If # equations = # unknowns, then

@ Ax = 0 has one or infinitely many solutions.

e for any given d, Ax = d has 0, 1, or infinitely many solutions.

o if rank(A) = # equations = #unknowns, Ax = d has exactly

one solution for every d.
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Linear Algebra rank

Given A is a square matrix. Then

Ax=d
= AlAx=A"1d
= x=A1d

Q: When does a system of linear equations Ax = d have a

unique solution ?
A: A1 exists (ie., A is nonsingular).

Q: Show that Ax = d cannot have exactly two different solutions.
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Linear Algebra determinants

@ The quantity ajjass — ajsas; is called the determinant of the

ex:

2 x 2 square matrix A =

@11 a2

Q21 Q22

the elements of A. It is denoted by |A| or det(A).

1 2
=1(-1)—-23)= -7
3 -1
@11 a2 Q13
Qo1 Q22 Q23 | = Q11Q22033 + G21G32013 1 A31A23G12

a31 dazz G33
—a130220a31 — Q12021433 — Q11432023

@ Determinants of order higher than 3 must be evaluated by

Laplace expansion.
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Linear Algebra determinants

@ Consider an n x n matrix, A, with typical element a;;. The

minor associated with each element is denoted A/;; and is the
determinant of the (n — 1) x (n — 1) matrix formed by deleting
the 7th row and jth column of the matrix A.

ai; a2

a1 a2
ex: A=

anl  ap2

G2 Q23

asz ass
= M11 =

an2 an3

P. C. Roger Cheng (Econ, NCU)
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Linear Algebra determinants

@ The cofactor of element a;; is the minor of that element
multiplied by (—1)"*/, and is denoted C};:

Cy = (_1)i+jMz'j7 ,j=1,2,...,n

+ _ + (_1)1+n

_ + — ce (_1)2+n

+ _ + (_1)3+n
(1R (e
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Linear Algebra
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Linear Algebra determinants

@ The determinant of an n x n matrix A may be found by adding
along any row or column the product of each element a;; and its
associated cofactor, that is,

n n
Al =) ayCiy =Y ayCy
=1 i=1

by ith row by jth column
504 3 2 2 2 3
ex: |2 3 2 |=3 -0
-1 —1 0 5
0 5 -1
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Linear Algebra determinants

@ Properties of Determinant

1.

The interchange of rows and columns does not change the value
of a determinant. = |A| = |A7|

. The interchange of any two rows (columns) will alter the sign of

the determinant.

. The multiplication of any one row (column) by a scalar A will

change the value of the determinant A-fold.

. The addition (subtraction) of a multiple of any row (column) to

(from) another row (column) will leave the value of the
determinant unchanged.
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Linear Algebra determinants

5. The expansion of a determinant by alien cofactors (the

cofactors of a “wrong” row or column) always yields zero.
n
= 2 aiCly = |A7]
j=1
= |A|'s kth row replaced by its ith row
= the kth row and the ith row in |A*| are identical

= |A*| =0
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Linear Algebra determinants

@ An n X n matrix, A, has an associated cofactor matrix that is

also n x n and is formed by replacing each a;; with its
associated cofactor.

Cll C(12 e Cln
C'21 C’22 U CQn
Cnl On2 e Cnn

@ The adjoint matrix of an n x n matrix A, denoted adj(A), is the
transpose of the cofactor matrix of A.

@ The inverse of an n x n matrix A is the adjoint matrix of A
divided by the determinant of A:

Al = ﬁ adj(A)
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Linear Algebra determinants

ailx a2 -+ Gln Ci Coup -+ Cm
az; @z -+ dop _ Ciz2 O -+ Cpo
A= | o . = adj(4) = . .
an1 An2 tee Anpn Cln C2n e Cnn
> a1;C1 Y- a0y > a1;Chj
Jj=1 Jj=1 j=1
> a2Cry 30 aCyy > a2;Chj
= A adJ(A) = j=1 j=1 j=1
Y. aniCrj Y- an;Co; > anjChnj
L j=1 Jj=1 j=1 i
| A 0
0 |A|
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Linear Algebra determinants

IC]
T
3 -1 —6 3 2 —9
L1l o 9o 4| =Ll -1 2 =5
-8 -3
—9 -5 2 6 -4 2

o [A|#£0 & A lexists <  Aisnonsingular
< Ax = d has a unique solution.
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Linear Algebra determinants

e Cramer’s Rule

Ax =d
1
= x=A"d=—adj(A)d

|Al
Ty Cn -+ Cu dy 1; diCa
. 1 . . . . 1

j . = — . . . . = a—
=1

Note that 3 d;C;; is nothing but the evaluation of the

=1
determinant derived from A by replacing its jth column by d.
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Linear Algebra determinants

4 -1 2 x 13
ex: 1 2 =2 y| =120
1 1 -1 2 5
13 -1 2 4 13 2
1 1
r=%|0 2 2|, y=4|1 0 -2,
5 1 -1 5 1
4 -1 13 4 —1 2
z:% 1 2 0| whereA=| 1 2 -2
1 1 5 1 1 -1
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Linear Algebra determinants

Vector d

Determinant |A

d+£0

(nonhomogeneous system)

d=0
(homogeneous system)

Al #0

(A is nonsingular)

a unique, nontrivial

solution x # 0

a unique, trivial

solution x =0

|Al=0 infinite number of | infinite number of
dependent ) _
, solutions solutions
(Ais
singular), ) . .
inconsistent no solution not applicable
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Linear Algebra determinants

@ A triangular matrix is composed of a nonzero element in the

positions above (below) the main diagonal and zero in the
positions below (above).

@ The determinant of a triangular matrix equals the product of the
diagonal elements.

10 10
ex: A= = |A]l = =2
2 2 2 2
400 400
B=|730| = |Bl=|73 0/|=60
215 2 15

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102

Fall, 2013 155 / 423



Linear Algebra linear independence

U1
(%) T
o Letv= _ €eR” sothatv' =| vy vy --- vn]

Un,

@ The length of an n-dimensional vector v is

vl =VvTv=y/v}+v3+- - +0}
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Linear Algebra

3v = (3,6)

u-+v
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Linear Algebra linear independence

@ Two vectors in R?, u and v, are linearly independent if
AMu—+Av=0

holds only when the scalars Ay and A\, are both zero. Here 0 is
the null vector.

@ Otherwise, if there exist A\; and A, are neither zero, then u and v

would point in the same direction and be linearly dependent.
That is,
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Linear Algebra linear independence

@ Any vector in R? can be expressed as a linear combination of
two linearly independent vectors in R?.

proof:
Given two linearly independent vectors, v and w in R?. For any
vector u, we write u = \v + \ow and if A = [ Al Ao ]T has a

solution, then the proof is done.

vy w A
Vg W2 A2
. . . U1 W .
Since v and w are linearly independent, # 0 which
Vo2 Wa

means A has a solution.
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Linear Algebra linear independence

@ Let V ={vy,Vvsy,...,v,} be a set of vectors in R™, then the

vectors in )V are linearly dependent iff

(i) some one of them can be expressed as a linear combination of the

remaining vectors, or

(i) there exists a set of scalars, (A1, A, ..., \,) (which are not all

zero), such that

D oAVi= AV Ava o+ AV, =0

=1

o If >, A\iv; = 0 only holds when \; = 0, V4, then these vectors

are linearly independent.
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Linear Algebra linear independence

@ If v and w are vectors in R”, then v + w is a vector in R™ and so
is Av. We say that R" is a vector space for which addition and
scalar multiplication can be defined and which is closed under
these operations.

@ Once we have found n linearly independent vectors in the
n-space, all the other vectors in the space can be expressed as a

linear combination of these n vectors.
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Linear Algebra linear independence

@ A basis is a set of linearly independent vectors that generates all
vectors in the space.

1
ex: e; = o — R?
Ylo |t |1
[ 0 0
e, = 0|, e= 1|, e3= 0 = R3
0 0
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Univariate Calculus and Optimization

Univariate Calculus
and Optimization

refer to textbook
Ch.6 Comparative Statics and the Concept of Derivative

Ch.7 Rules of Differentiation and Their Use in Comparative
Statics

Ch.8 Comparative-Static Analysis of General-Function Models
Ch.9 Optimization: A Special Variety of Equilibrium Analysis
Ch.10 Exponential and Logarithmic Functions
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Univariate Calculus and Optimization limit of series

@ A sequence of real numbers is an assignment of a real number to
each natural number, usually written as {x1, 2, z3,...,2p,...}

or {z,} 7.
ex: {1,2,3,4,...} (FL.) ex:{1,3,1, 1.} (F2)
ex: {1,3,4,%,16,...} (F3.) ex:{0,—3,%,—3,3,...} (F4)

ex: {—1,1,-1,1,—1,...} (F5.) ex:{3,3,3,2 ...} (F6.)

ex: {3.1,3.14,3.141,3.1415,...} (F7.)
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Univariate Calculus and Optimization
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Univariate Calculus and Optimization
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Univariate Calculus and Optimization
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Univariate Calculus and Optimization
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Univariate Calculus and Optimization

o {—1,1,-1,1,-1,...}
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Univariate Calculus and Optimization
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Univariate Calculus and Optimization

o {3.1,3.14,3.141,3.1415,.. .}

3.15
e © © 0 0 0 0 0 o

3.125

3.1

3.075
012345678 9101M1
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Univariate Calculus and Optimization limit of series

There are basically 3 kinds of sequences:

@ sequences in which the entries get closer and closer and stay close
to some limiting value

@ sequences in which the entries increase (or decrease) without
bound

@ sequences in which the entries jump back and forth on the
number line
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Univariate Calculus and Optimization limit of series

o Let {z,} , be asequence of real numbers and let r be a real
number. We say that r is the limit of this sequence if for any
(small) positive number ¢, there is a positive integer N such that

for all n > N, z, is in the e-interval about r, i.e.,
|z, — 7| <e,
then we say that the sequence converges to r and write

limz, =r or lm x,=r or =z, —T.
n—oo
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Univariate Calculus and Optimization limit of series

Note

1.The elements of the converging sequence need not be distinct

from each other or distinct from the limit.
2.The convergence need not be all from one side.

3.The convergence need not be monotonic: each element need

not be closer to the limit than all previous elements.

accumulation point (or cluster point)

If for any positive € there are infinitely many elements of the sequence

in the interval I.(r), then r is a cluster point of the sequence.
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Univariate Calculus and Optimization limit of series

@ A sequence can have at most one limit.

Proof: Suppose that a sequence {z,} ., has two limits: ; and
ry9. Take € to be some number less than %|r1 — 1], say
1

€ = 7|r1 — 12|, so that I(ry) and I.(r3) are disjoint intervals.

Since x,, — 71, there is an Ny such that for n > N; all the z,, are
in I.(ry). Similarly, there is an N, such that for n > Nj all the z,,
are in I.(r9). Hence, for all n > max{Ny, N2}, x,, are in both
I.(r1) and I (7).

But no point can be in both two disjoint intervals =
Contradiction!
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Univariate Calculus and Optimization comparative statics and the concept of derivative

@ When we say x — a, the variable x can approach the number a
either from values less than a (written © — a~), or from values
greater than a (written z — a™).

@ If, as x — a from the left side, the function f(x) approaches a

finite number L, written
lim f(x)= L,

T—a—

then we call L; the left-hand limit of f(z) at x = a.

e If, as x — a from the right side, the function f(x) approaches a
finite number Lo, written
lim f(z) = Lo,
z—at

then we call L, the right-hand limit of f(z) at z = a.
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Univariate Calculus and Optimization comparative statics and the concept of derivative

y = f(z)
9 L1+ ¢
GN.. Ll

5 Ll—E
a_5 a > T

@ If for any € > 0, however small, there exists some ¢ > 0, such that
|f(x) — Li| <€ V x satisfying a — 0 < = < a, then the left-hand
limit exists and is equal to L.

@ If for any € > 0, however small, there exists some § > 0, such that
|f(z) — La| <€, V z satisfying a < < a+ J, then the
right-hand limit exists and is equal to Lo
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Univariate Calculus and Optimization comparative statics and the concept of derivative

@ Suppose that a function y = f(x) is defined on some open
interval including the point a. We say that the limit of f(z) at

xr = a, that is, lim f(x), exists if
r—ra

(i) Ly = xlgil_ f(z) and Ly = xlir{# (x) exist
and
(i) Ly = L, = L.
o Note that }Jlili f(z) (the limit of f(z) at x = a) is distinct from
f(a) (the function value of f(z) at = = a).
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Univariate Calculus and Optimization comparative statics and the concept of derivative

L) —>e

L,
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Univariate Calculus and Optimization comparative statics and the concept of derivative

The Formal Definition of Limit

@ As x — a, the limit of f(z) is the finite number L if, given any
positive ¢ (however small), there can be found a positive number
0 such that

|f(x)— L] <€ for 0<|z—al<d

y=J)
/-\;’ €
>
a
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Univariate Calculus and Optimization comparative statics and the concept of derivative

Limit Theorems

o If 9161_r>rcll f(z) = fo and gljlir(llg(l‘) = go, then
(1) lim( () £ () ] = fo = g0

(2) lim f(@)g(@) = fo g0 (3) lim L) — Jo

T—a T—a g(l’) Jo'
ex: limz =a ex: limk =k
Tr—a T—a
ex: lim~vyx + 6 = lim vy lim z + hm6 =va+0
r—a r—a r—a
ex: lim 2" = (limz)" = a”
Tr—a Tr—a
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Univariate Calculus and Optimization comparative statics and the concept of derivative

@ A function f(z), which is defined on an open interval including

the point x = a, is continuous at « if

(i) 31613(11 f(z) exists and  (ii) lim f(x) = f(a).

r—a

@ A function f(z), which is defined on an open interval including
the point x = a, is continuous at that point if, given any positive
¢ (however small), there can be found a positive number § such
that |f(x) — f(a)| < €, whenever |z — a| < 4.

@ A function that is not continuous is said to be discontinuous.
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Univariate Calculus and Optimization comparative statics and the concept of derivative

@ Suppose that f(x) and g(z) are continuous functions and that
¢ # 0 is a constant. The following are also continuous:

(i) cf(x) (i) f(z)+c
(iii) f(z) + g(2) (iv) f(z)g(x)
(v) f(x)/g(x) for g(x) # 0

(vi) f71(), if it exists
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Univariate Calculus and Optimization comparative statics and the concept of derivative

@ Let f(x) be defined on the closed interval [a,b],z € R and a < b.
We say that

(i) f(x) is continuous from the right at the point x = a if
lim f(z) exists, f(a) exists, and lim f(z) = f(a).
z—at z—at

(ii) f(z) is continuous from the left at the point = = b if
lilil f(z) exists, f(b) exists, and liIll)l f(z) = f(b).
x—b— x—b~

(iii) f(x) is continuous on the closed interval [a, b] if it is
(1) continuous at every point x strictly within the interval
(i.e., a < x < b), (2) continuous from the right at x = a and

(3) continuous from the left at x = b.
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Univariate Calculus and Optimization comparative statics and the concept of derivative

o (Intermediate-value theorem)
Suppose that f(z) is a continuous function on the closed
interval [a, b] and that f(a) # f(b). Then, for any number g
between f(a) and f(b), there is some value of z, say x = ¢,
between a and b such that 5 = f(c).

A y= f(x)
f(b)
]
f(a)ﬂ © b
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Univariate Calculus and Optimization comparative statics and the concept of derivative

ex: If the demand and supply functions are continuous and the
following two conditions are satisfied:

(i) at zero price,D(0) > S(0),
(ii) there exists some price, p > 0, at which S(p) > D(p),

then there exists a positive equilibrium price in the market.

Hint: Let Z(p) = D(p) — S(p)
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Univariate Calculus and Optimization comparative statics and the concept of derivative

@ Given two points P = (z1, f(z1)) and Q = (2, f(x2)) on the
graph of a function y = f(x), we define the secant line as the
straight line joining these two points and its slope is

_ fe)—f@) _ Ay

mpq = To—T1 Az
f(z)
, Q
f(w2)
Ay = f(x2) — f(21)
P
flz1) A
T =1 — 1
T
T o)
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Univariate Calculus and Optimization comparative statics and the concept of derivative

o If the function y = f(x) is defined on some open interval
including the point P = (z1, f(z1)) and Alim0 mpg exists, then
Tr—r
the line passing through the point P with slope equal to

AlimO mpg is the tangent line of the function y = f(x) at P.
z—

f(x)
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Univariate Calculus and Optimization comparative-static analysis of general-function Models

@ The derivative of a function y = f(z) at the point
P = (x1, f(x1)) is the slope of the tangent line at that point.

: : o flw2) — fla)
r1) = lim mpp = lim ——————~
f ( 1) Az—0 PQ To—T] To — X1
where Ax = x5 — x1. We can also write this as

/ IERT o f(x1+Ax)_f(xl)
fla) = fmgmee = 0078y
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Univariate Calculus and Optimization

I /'a)
flz) = T, r<l1
2—z, z2>1 1 O:
1,,
0 ’ - o—
1
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Univariate Calculus and Optimization comparative-static analysis of general-function Models

o If f'(z) exists (i.e., the function f(z) is differentiable) at the
point = = a, then the function f(z) must also be continuous at

this point.

Proof:

lim[ f(z) = f(a) | = lim f(z) = f(a)

tim{ L =S (o _ ) | = tim( LD =S iy (0 — )

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 191 / 423



Univariate Calculus and Optimization comparative-static analysis of general-function Models

@ The smoothness of a primitive function, f(z), can be linked to
the continuity of its derivative function, f’(z). That is, if a
certain function is smooth everywhere on the domain, it is

referred to as a continuously differentiable function.

@ A function f(z) defined on the domain = € [a, b] is differentiable
on [a,b] if

(1) the right-hand derivative for f(x) exists at x = a,
(2) the left-hand derivative exists at = = b,
(3) f(z) is differentiable at every point in the open set (a, b).
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

Rules of Differentiation
o f(xr) =k (aconstant) =  f(z)=0
° f( y=z" = fl(z)=na""!
L[ f@)£g(x)] = f'(x) £ ()
ex: f(x)=4da? — 23+ 1722 + 30 — 1
f'(x) = 162% — 32 + 342 + 3
f"(z) = 482 — 6x + 34
f"(r)=96x—6 fW@)=96 fOx)=0
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nivariate Calculus and Optimization rules of differentiation and their use in comparative statics

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 194 / 423



Univariate Calculus and Optimization

ex:
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

ex:
‘ MC(q) AC(q) = TC(;(Q)
AC@) diqAC(Q) _ d%[ TC(;(q) l
d TC TC
- [d—q (q) l¢ —TC(q)
= 2

\J
S
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

The Chain Rule

o If y= f(u) and u = g(x) so that y = f(g(z)) = h(z), then

/ / ’ dy dy du
v =g o P () (%)
ex:
TR=TR(q) and ¢ = q(L) so that TR = f(L)

— MRP(L) = £ f(L) = (dTCZ(q)) (dzl(LL)>

= MR(q)MP(L)
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

The Derivative of the Inverse of a Function

o If y = f(x) has the inverse function z = f~!(y) = g(y), then

R A A
dy ~ dyjdx I = 1a)

ex:

TC(L) =wL+Cyand g =q(L) (or L = L(q))

= TC(q) =wL(q) + Cy

dro(g) = WAL . w w

= MC(q) = g, dg ~ dq(L)/dL ~ MP(L)
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

e For a function y = f(z), which is assumed to be nth-order

continuously differentiable,

(i) the first derivative function (the slope of f):

dy
/ —_
(ii) the second derivative function (the rate of change of the slope
of f):
d d dy. d%
" _ % / _ S, _ 2
(iii) the third derivative function:
" d " d2 ! d3y
)=l @) =5l )= -3
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

@ [/ > 0: the value of f tends to increase
f'=0: the value of f tends to stay constant
f' < 0: the value of f tends to decrease
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Univariate Calculus and Optimization rules of differentiation and their use in comparative statics

@ f” > 0: the slope of the curve tends to increase
f" < 0: the slope of the curve tends to decrease

Y Y

> T > T
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

@ Objective function —> dependent variable
ex: Utility Maximization
Profit Maximization

Cost Minimization

@ Choice variable = independent variable

ex: the quantities of goods
the quantities of products

the quantities of inputs
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

e At a global (absolute) maximum z*,
f@) = f(x)  Va
whereas at a local (relative) maximum z,

f(z) > f(x), Vaee(t—eT+e)

where ¢ (perhaps very small) is positive.
y

Y
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

o If the differentiable function f takes an (local) extreme value
(maximum or minimum) at a point x*, then
f'(xz*) =0  [first-order condition].

@ Note that the first-order condition, f'(z*) = 0, is only necessary

but not sufficient for z* to yield an extremum value.

1. maximum

relative extremum _ *’ zero slope —> 2. minimum

\*’ @ inflection point
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

o If f'(x*) =0, then z* : critical value
f(z*) : stationary value
(x*, f(x*)) : stationary point
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

@ A twice differentiable function f(z) is convex (concave) if
f"(xz) >0 (f"(x) <0) at all points on its domain.

@ A twice differentiable function f(z) is strictly convex (strictly
concave) if f(z) > 0 (f"(z) <0).

@ However, f”(x) might be zero at a stationary point for a strictly
convex (strictly concave) function.

ex: y = f(x) = x* when considering = = 0.

@ Hence, f"(z*) > (<) 0 with f’(2*) = 0 is sufficient but not
necessary for f(z*) to be a relative minimum (maximum). It is
necessary that f”(z*) > (<) 0 with f/'(z*) =0 .
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

ex: Let the R(Q) and C(Q) functions be
R(Q) = 1200Q — 2Q?
C(Q) = @3 — 61.25Q? + 1528.5Q + 2000

Then the profit function is
7(Q) = —Q> + 59.25Q% — 328.5Q — 2000

which has two critical values, Q = 3 and @) = 36.5, because
(% = —3Q% +118.5Q — 328.5 = —3(Q — 3)(Q — 36.5).

But since the second derivative is
2 >0 when@ =3
5 = —6Q +118.5
dq @ <0 when Q =36.5

the profit-maximizing output is Q* = 36.5.
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

@ Maclaurin Series Expansion of a Polynomial Function
z) = ag + a1z + ax® + agx® + - + a,a” = f(0)=ap
/

f(z)
f'(z) = a1 + 2a22 + 3azx® + - - - + na,z" ! = f(0)=ay
f"(z) = 2as + (3)(2)azx + - -+ n(n — Daya™ 2 = f(0) = 2a

fO@) = -1)m-2) @@ Man = [00) =nla,

! " (n)
— fa) = L0 SO SO0 L0
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

e Taylor Series Expansion (around = = z)
Letz =20+ = f(z)= f(xo+9)=g(d)
Hence, f/(zo+6) = ¢'(0) and f(zg+ ) = g™ (9)

f(z) = g(5) = g(()(!)) N 9’1(!0)5 + 9”2(!0)52 oy %l@an

. ! e () (4
I VA NP5 PO
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

e Taylor's Theorem
Given an arbitrary function f(z), if we know the values f(xg),

f(xo), f"(x0), -+ -, etc., then f(z) can be expanded around x, as

! (n)
flz) = &'(io_)+%ﬂ!00_)(x_xo)+...+f_71(!$_(ﬂ(x_$o)n + Ryt

:Pn+Rn+1

()
(n+1)!

e If it happens that

where R, .1 = (x — x0)"** and p € (z,x0).

R,y1 —0asn—o00 sothat P, — f(x)asn — oo
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

@ A function f(x) attains a relative maximum (minimum) value at
xo if f(x) — f(xo) is negative (positive) for values of z in the
immediate neighborhood of x.

o Because of the continuity of the nth derivative, f™(p) will have

the same sign as f(™ (x) does since p is very close to .

ex: f'(xo) # 0 .
£@) = flao) = L (@ — 20) = (o) = o)

= f(xo) cannot be a relative extremum.
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

ex: f'(z0) =0, f"(xo) # 0
Fw) = fan) = L80 ( — g) 4 L (0 2
= 31" (D) — 20)?
= f(xo) is a relative maximum if f”(xo) < 0 with f'(x0) = 0.
ex: f'(zo) = f"(wo) = 0, f"(x0) # 0
§@) = f(ao) = LG @ — o) + L5 @ - )2+ L0 - o)?
f"(p)(@ = xo)?

= (xg, f(x0)) is an inflection point.

Sy~
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Univariate Calculus and Optimization optimization: a special variety of equilibrium analysis

@ Nth-Derivative Test

If f'(z0) = 0 and the first nonzero derivative value at x
encountered in successive derivative is Nth, i.e., fV)(z) # 0,

then the stationary value f(xq) will be

1. a relative maximum if N is even and f®V) () < 0.
2. a relative minimum if NV is even and f")(z,) > 0.
3. an inflection point if V is odd.

ex: y= f(z) =23

ex: y= f(z)=(x—2)"+3
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Univariate Calculus and Optimization exponential and logarithmic functions

e Exponential Functions:

y=f(z)=a" a>0, a#l.

y= (%)w A y=2°

\ 4
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Univariate Calculus and Optimization exponential and logarithmic functions

Q: What kind of number a can, as a base of the exponential
function f(z) = a”,possess the property that f(z) = f'(x) ?

, . r+h)— flx
:>f(x):hmf(+lz f(z)

h—0
z+h T
=i a —a
s h
h
= a® i a' —1
R
? = f(x)

h
= lima—h_l —1
h—0
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Univariate Calculus and Optimization exponential and logarithmic functions

= Let E(m) = (1 + 7)™, then

E(1) =2,
E(2) = 2.25,
E(3) = 2.37037- - -,
E(4) = 24414 - -,
E(5) = 2.48832,
= = lim E(m)= lim (14 &)™ = 2.71828
m—00 m—0o0
= %e“ =e"
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Univariate Calculus and Optimization exponential and logarithmic functions

= f(x)=f(z)=f'z)=-- = fO(z) = ¢
F0)=f"(0)=---=f™0) =1

= e = f(0) + fll(!o)x—l— fﬂz(!o)x2+ fl;(!o):c?)—l—--'

=1+a+ §2® + Ja® +

4
~
—
=
I

= e=1+1+g+ g+ = 271828
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Univariate Calculus and Optimization exponential and logarithmic functions

e Economic Interpretation

(1) As the year-end value to which a principle of $1 will grow if
interest at the rate of 100% per annum is compounded

continuously.

= V() =0+b,
V(2)=(1+3)2
V(3)=(1+1y,

= lim V(m) = lim (1+7)" =
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Univariate Calculus and Optimization exponential and logarithmic functions

(2) As the ¢ year-end value to which a principle of $A will grow if

interest at the rate of r per annum is compounded continuously.

= V(1) = A1 +7r),
V(2) = A(1+ §),
V(3) = A1+ )",

= lim V(m) = lim A(1+ 4)™

m—00 m—0o0
= Ilim A(1+ 1__ym/ryrt
(m /r)—oo ( (m/r))
:Aert
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Univariate Calculus and Optimization exponential and logarithmic functions

(3) r as the instantaneous rate of growth of Ae™.
Let V = Ae™, then AV _ ppert — Y

dt
= 7, = —‘/f =r

(4) Discounting and the present value.

V=Ae" = A=Ve™
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Univariate Calculus and Optimization exponential and logarithmic functions

@ Logarithms:

y=f(x)=log,xz, a>0,a#1, >0

Yy

A
y =logyx
> T
yzlog(%)z
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Univariate Calculus and Optimization exponential and logarithmic functions

@ Rules

1.

2.

log, (uv) =log, u +log, v ex:
log, (%) =log,u —log,v  ex:

. log, u™ =nlog, u

. log,u = (log, a)!

. logr u™ = %loga u

P. C. Roger Cheng (Econ, NCU)

ex:

. log, u = (log, a)(log, u) ex:

log, 6 = log, 2 + log, 3
log, 5 = log, 10 — log, 2
log;,0.001 = log;, 1073 = —3

(log, 3)(logs 64) = log, 43 = 3
1

ex: log;2 =1——
&3 log, 3
. _ 3_3
ex: log,8 =logye 2’ =35
Mathematical Economics 102 Fall, 2013 222 / 423



Univariate Calculus and Optimization exponential and logarithmic functions

@ Define log, = Inx as the natural logarithm

and log,, x = log x as the common logarithm.
° % Inx = %

proof:
Let f(x) =Inz and m = %
ln(x—i-h)
:f/(x):%%f($+h}2_f(x):%% 7
In(1 + 1)
Ty 7 Jim In(1+ )"
:lln( liqull—i-l)m)zl
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Univariate Calculus and Optimization

3t

d .3t d 3t
V=5 = Gen ) Cq

ex: y=1Intd

ex: y=e

= ¥ = (G () = 50t = 2

ex: y=t3Int?
=y = (3%)(Int?) + (£°)(

S\

) = 6t%Int + 2t2
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Univariate Calculus and Optimization exponential and logarithmic functions

e b=e"" or b=qlo8at

° %bx:bwlnb

d 1
° Jrlog T =1
proof 1:

%bx — %(elnb)x _ %e(lnb)x _ (hl b)e(lnb)z = b 1lnb

proof 2:

d _ d/nzy_ 1
dz os e = g () = 2
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Univariate Calculus and Optimization exponential and logarithmic functions

ex: y = 121+

=y = (-1)12""In12

.112

(x+3)(2x + 1)
= Iny=Inz?—In(x+3) — In(2z + 1)

v, 2 1 _ 9
=GV =% - 753  mr1

ex: y =

;o x? (g_ 12 )
=>y—($+3)(2x+1) T x+3 20+1
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Univariate Calculus and Optimization exponential and logarithmic functions

ex: y=4'" = Iny=1In4"=¢In4
1,d
= éltlny— (dgtJ) vy =In4

ex: y=uw = Iny=khutlnv = v =7%+%

y=% = Iny=hu—Inv = =77

y=u+v = Iny=In(u+v)

1 (du d)
dt * dt

U U
= 7@/ U,——H)’Yu + U—_H)’Yv
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Multivariate Calculus and Optimization

Multivariate Calculus

and Optimization

refer to textbook

Ch.11 The Case of More than One Choice Variable
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Multivariate Calculus and Optimization partial differentiation

ex:

ex:

Let y = f(xy, 29, -+ ,x,), where z; are mutually independent
The partial derivative of y with respect to the variable z; is
Oy
fz - WZ
— lim f(xl,...,x,-—i—Aa:i,...,xn) —f(:bl,...,il,‘i,...,l‘n)

A0 Ax;
f(z1,22) = 33:% + 2129 + 4:1:%

= fl(.%'l, xg) =621 + x9 and fg(llj'l,.%'z) =21+ 8x9

2¢ — 3
flag) = 230

2z 4+y)—2x—3y) 5
= fz(xvy) - (x+y)2 - (LL’ +yy)2
_ (3@ +y) -2 -3y 5z
fule.y) = (z+y)° C(z+y)’
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Multivariate Calculus and Optimization applications to comparative-static analysis

ex: Q° =a—bP (a,b>0)

Q% =—c+dP (c,d>0)

« _a+tec « _ ad—bc
= PP=11r0 @ =%F4

oP* _ orP* _ orP* _ oP* _
=9 =" =" ’ =

dc
00" _, 0" _, 0" _,
Oa 7 ob T 7 Oec -

Q
SIS
|
Q
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Multivariate Calculus and Optimization differentials and derivatives

odyz(g—z

dy: the differential of y

)dx

dz: the differential of =

dy/dz: the derivative of y = f(x)

- (@ =@ !
ex: ¢ = T2 — (G35
= m(g) = %tanﬁ Y, B
/ slope=m
\6’
> Q
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Multivariate Calculus and Optimization total differentials

o Total Differentials

y=flanm) = dy=(GL)d + (GL)dws
dy _ dy
T d 1 ldzo=0
ex: U=U(xy,29) =Uy and MU, = gU;, MU, = ga(:é
= dU = MU;dzy + MUsdzy =0 .
dry _ MU, _ 7
= G =~ MO, = MBS
U="U
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Multivariate Calculus and Optimization total differentials

ex: M = P11 +p2.’172 + - —i—pnxn

= dM = (prdz1 + x1dp1) + (padze + xodpe) + - - - + (ppdxy, + Tpdpy)

If dpy = dpy, = --- = dp, =0, then
dM = pld!l?l + pzd.'EQ + - —I—pndxn
o d
(i) if dM =0, then d—if = —%
(i) if dM # 0, then

dM _ (1T iy (Ralay( By gy (Paday (i)

= Sim +Samp 4+ -+ Sy =1
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Multivariate Calculus and Optimization

ex: y =5z} + 3xy
= dy = 10z dxy + 3 dxs

ex: y = 3z} + z 73

= dy = (621 + 23) dz| + 27175 dzs

T+ 2o
27

S dy = 222 — (2 —ng)(élxl) day + (
4o

ex: y=

o l)dl'g
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Multivariate Calculus and Optimization total derivatives

@ Total Derivatives

Case 1:

Yy = f($7w)
— fg(w),w) e

= dy = frdx + fo,dw = f, g, dw + fo, dw

= B (Guydey (O
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Multivariate Calculus and Optimization total derivatives

Case 2:

y = f(z1, 22, w) k—xle\

= dy:f1d$1+f2dl‘2+fwdw
:flgwdw+f2hwdw+fwdw

= = GG + GG + (5
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Multivariate Calculus and Optimization total derivatives

Case 3:
y:f(l'l,xQ,U/'U / Y
~ flglv). Al o iz
Yy
%
f

= dy = fidx, + fadxs + fudu+ f, dv
= f1(gudu+ g, dv) + fo (hy du + hy, dv) + f, du + f, dv

:(flgu+f2hu+fu)du+(flgv+f2hv+fv>dv

= () du+ () dv
where {2 = 94| = (S5 + (GL)(G2) + (50)

is the partial total derivative of y with respect to wu.
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

e The Differential Version of Optimization Conditions
y = f(z)
= dy = f'(z)dx =0

if and only if  f'(z) =0 [ 1st-order condition ]

= d*y = d(dy) = d(f'(x) dz)
= (df'(x)) dx = (f"(x) d) dz
= ["(z)(dz)* = f"(x)dz® > (<)0
if and only if f"(z) > (<)0 [ 2nd-order condition |
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Multivariate Calculus and Optimization

@ Two Variables Case

Yy = f(xh x2)
= dy = fidry + fodry =0  for arbitrary values of dz; and dz,
iff fi=/fo=0 [ 1st-order condition ]

Yy=-—T1" — X2 Yy=x1" — 2 Yy=—T1" — T2
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

ex: y= f(xy,22) = 213 + br1m9 — X2

fi(zy, @) = 3212 + by =)
fa(x1, x9) = by — 21 =0

= (z1,72) = (0,0) or (—25/6,—125/12)

@ 2nd-Order Partial Derivatives

Given y = f(x1,22) is a twice differentiable function, then
_ 0 _ 0 (9y
Ju = %fl(m,@) = Ox, (%1)

fi2 = %fl(h,%) = % (%yl)
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

@ 2nd-Order Condition

d?y = d(dy) = (aixldy)dl’l + (ai@dwd@
= (52 (frdoy + fo duz) oy + [ 52 (fr day + fo doz) |day

= (fuidz1 + for dzo)dzy + (fiadzy + foo dao)das

= fu1(dz1)? + for(dz2)(dzy) + frz2(dwr)(dzs) + foo(daa)?

dxrq
d(EQ

fir fi2
- [ dry o } [ for foo

] (examples)

= f11 dx12 + 2f12 dl’l diUQ + f22 d.ﬁl?gz [YOUﬂg’S Theorem]
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Multivariate Calculus and Optimization

ex: ¢ = 5u® + 3uv + 202

cooel[ 8 ][

ex: z = —2z% 4 2xy — y?

R
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

@ Young’'s Theorem

For a function

y = f(w1,09,...,2,)
with continuous first- and second-order partial derivatives, the
order of differentiation in computing the cross-partials is
irrelevant. That is, f;; = f;; for any pair ¢, j.

_ 0 (0 0
fij:%(agi):a (33{]) sz
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

d*y = fn dr,® + 2f12dxy dxe + foo dxy?

= fu(dx, + % dxs)? + f11f2?1: fio? (das)?

(].) dzy >0 iff f11 > O, f22 > 0, f11 f22 — f122 >0
(2) Py <0 iff fi1 <0, foa <0, fi1 foo — f12° >0

(3) If fi1 fao — f12° < 0, then the point is a saddle point or an
inflection point.

(examples)
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

o If the function y = f(x1, ) defined on R? is twice continuously

differentiable and
d*y = fuy dai® + 2fro day das + for das? > (<) 0

whenever at least one of dx; or dxs is nonzero, then

y = f(x1,x2) is a strictly convex (strictly concave) function.

e If the function y = f(z1, z2) defined on R? is twice continuously

differentiable, then it is convex (concave) if and only if

d*y = fi1 doi® + 2fiaday dzg + foo dzy® > (<) 0
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

@ Three Variables Case
Z/ - f(x17x27x3)
(1) dy = fidzxy + fodrs + f3dxs

= dy=0 iff fi=/fo=/f3=0 [ 1st-order condition |

(2) d2y = (fH dl’l —+ f12 d.’lfg -+ f13 d$3)d$1
+(for dzy + fop dxg + fo3 dag)dsy
+(f31dxy + faa dry + f33dws)drs

f11 f12 f13 dz,
= [ dz, dxs d$3] f21 f22 f23 dxy
a1 faa fas dxs
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

@ Let H be the Hessian Matrix associated with a twice
continuously differentiable function y = f(x), x € R".

fll f12 fln
fnl fn2 fnn

e Denote |H,|, |Hs|,- - ,|H,| as the leading principal minors:

i f Ju iz fi3
’Hl, = ‘f11|a |H2| = fll le ) ‘Hs‘ = | fa foo [fo3
oo far fa2 fa3
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

3 3

Z Z(fij dx; dw;)

: ]:

= fri(dx; + % dxo + % dxs)?

= B 2 + (o — Jo

+2(f11f23 :1f12f13)(dx2)(da:3)

= [H1|(dz1 + ;ﬁ dxg + % drs)?

| 2| f11f23—f12f13 @ 2
e+ i de) ) (dn)

o d’y >0 iff |Hy >0, |Hy >0, |Hsl>0

o d*’y <0 iff |Hy| <0, |Ho| >0, |H3] <0
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

@ n-Variables Case

(1) d®>y >0 iff |Hy| >0, |Hy| >0, |Hs| >0,---, |H,| >0

- - +o +
and H is said to be a positive definite matrix.

(2) d2y<0 iff |H1| < 0, |H2| > 0, |H3| < 0, |H4| >0,---
and H is said to be a negative definite matrix.

(3) d*>y >0 iff |Hy| >0, |Hy| >0, |H3|>0,---, |H,| >0
and H is said to be a positive semidefinite matrix.

(4) d*y <0 iff |Hy| <0, |Hs| >0, |H3| <0, |[Hy| >0,---
and H is said to be a negative semidefinite matrix.
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

ex: y = f(.Tl, T, (13'3) = 3.T12 - 2$1I2 + 41’1,1'3 + 55!722 + 45(332 — 2I2$3

= fi(x1,x9,23) = 621 — 229 + 423

6 -2 4
fQ(:L‘l,i?Q,l’g) =221+ 1029 — 223 = H = -2 10 -2
4 -2 8
f3(:L‘1, x9, 1‘3) = 4x1 + 8x3 — 229
= |Hi|=6>0, |Hy= 0 _g |:56>0,
6 -2 4
|Hs|=| =2 10 —2 | =296 >0,
4 -2 8

= H is a positive definite matrix.
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(U MTVETT TN R ST TEET RO LTy PL 1AM the differential version of optimization conditions

ex: Yy = f(xla X2, 1‘3) - 23312 + 3[1)22 — 3332 + 61‘11‘2 — 81‘11’3 — 21’2[1)3

4 6 =8
= H = 6 6 -2
-8 -2 =2
4 6
= |Hi|=4>0, |Hy|= 6 6 =—-12 <0,

= H is neither positive nor negative definite.

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 251 / 423



|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

ex: Suppose that a monopolistic firm sells a single product in three
separate markets and the demands facing this firm are as follows:
P =63—-40Q,, PFP,=105-50Q,,  P;=75—-06Q3
and that the total-cost function is
C =20+ 15Q.
Please solve the profit maximization problem for this firm.

e Note that R; = P; ();, hence

d db;
T@Ri = Pz + (dQl) Qz

-1
1+ (dQ"Pl)

= b
adpP; Q;

1
oy
|€i
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|\ [TIEVETTEY @R [T [TERET T MOJeLaT TP 2N et the differential version of optimization conditions

7T:R1+R2+R3—C
= (63 —4Q1)Q1 + (105 — 5Q2)Q2 + (75 — 6Q3)Q3
—[20 4+ 15(Q1 + Q2 + Q3)]
= —20 + 48Q1 — 4Q12 4+ 90Q2 — 5Q2% + 60Q3 — 6Q3>
= m=48—8Q; =0

T = 90 - 10@2 S:et 0 = (@7@7@) = (6797 5)
Ty =60 — 12Q3 = 0

-8 0 0
= H=| 0 -10 0 is negative definite.
0 0 —12

Thus, the equilibrium profit is a maximum.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

e Eigenvalue and Eigenvector
Given an n x n matrix A, we can find a scalar A and an n x 1

vector x # 0,51 such that
Ax = )X,

where A is an eigenvalue (characteristic root) of A
and x is an eigenvector (characteristic vector) of A.
o Ax=Xx = (A-A)x=0,.
@ If x is required not to be a trivial solution (i.e., x # 0),

= |A=X|=0 e, (A— \)issingular.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

ex:A:[4 1]
2 3

4— A 1
3—-A

= [A— )| = = A2 —7A+10=0

= A =2 and X\ =5
4—2 1 2 1 al
X1 = =0
4 — 1 -1 1
and g X9 = 2 _g
2 3—-5 2 =2 b

= By normalization (Let x| = VxTx = Va2 + b2 =1)

| Vs _| V2 :
X1—[_2/\/5] and X2_[1/\/§] ex.[

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102
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Multivariate Calculus and Optimization eigenvalue and eigenvector

2 11 2—A 1 1
ex: A=1|1 2 1 = J[A-)|= 1 2-Xx 1
1 1 2 1 1 2—A

=-NM+6M2 -9\ +4=0
= M=1 X=1 M3=4

111
(i) 1 2-1 1 |xi=|111]]|b |=0
111

= a1+ b1 +¢; =0 and (by normalization) al4+b’+c2=1

1/V2 1/v/6
= x1=|-1/vV2 | and x2=| 1/V6
0 —2//6
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Multivariate Calculus and Optimization eigenvalue and eigenvector

2-4 1 1 —2 1 1 as
(ii) 1 2-4 1 |xz=|1 -2 1 by | =0
1 2-4 1 1 -2 | e

= a3 = bz = c3 and (by normalization) a3+ b3? + 32 =1

1/V3
= X3 = 1/\/§
1/V3

1 -1 -1
ex: 1 -1 0
1 0 -1
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Multivariate Calculus and Optimization eigenvalue and eigenvector

o |A— M|
ail — A a2 e a1n
a1 az — A - a2y
anl an2 Cee G — A

(is an nth-degree polynomial in \)

= (=D)"A" — A" @A 2 ()" g A+ (1) ]
(and thus has n solutions A1, Ag, -++, A,)

= (ED"A=A)A = A2) - (A= An)

@ Note that a; denotes the sum and «,, the product of all

eigenvalues.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

(] |f)\:O, then |A| :Oén:)\l)\Q"')\n
(1) The determinant of A equals the product of all its eigenvalues.

(2) A is nonsingular if and only if no eigenvalue equals zero.

(] alz)\1+)\2+---+)\n
=ay +axg + -+ a,, = trace(A)
(3) The sum of all the eigenvalues of A equals the trace of A.

2 11
4 1
ex: ex:| 1 2 1
2 3
1 1 2
= M =2 and XAy =5 =\ C A=1, A3 =
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Multivariate Calculus and Optimization eigenvalue and eigenvector

o |A— M| =|(A—ADT| = |AT — Al

(4) AT has the same eigenvalues as A's.

o [A— M| =kT"k(A—=X)|=k"kA— (ENI|
(5) The eigenvalues of kA equals k-folds the eigenvalues of A.

o If A~! exists, then |[A — \I| = |A — NAA™Y|
= [(=MA)(—%1 + A7)
= (=A)"|Al| A7t = 11
(6) The eigenvalues of A~! are the reciprocal of the eigenvalues
of A.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

@ Theorem
If A is a symmetric matrix with all real elements, then the n
eigenvalues are all real numbers.

@ Theorem (important!!)

For a real symmetric matrix A,

x;Tx; =1 and xiij =0, Vi#j
(normalization) (orthogonal)
= (x1,X2, "+ ,Xy) are said to be a set of orthonormal vectors.
Proof XiT)\ij = xiTij = (XiTAXj)T
x;TAT (1)1 = x;T Ax; = x; T \ix;

= Nj(xTx5) = Ni(x;7%x;) or (A —N)(xTx5) =0

If A; # A;, then x; 7 x; = 0.

If A; = A;, then we can find x; and x; such that Xiij =0.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

fir - fin dxy
o d’q=|dv; - d:vn] oo : | =uTHu
fnl fnn dxn
[ I B
Let B=| x1 x3 --- X,
[ T

= B is nonsingular (WHY?) and hence B~! exists

Let y = B 'u (or u = By)
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Multivariate Calculus and Optimization eigenvalue and eigenvector

= d’¢=u’Hu= (By)TH(By =yl (BTHB)y
T
1 ]
T| X"
=y : /\1X1 AoXo o0 ApXy | Y
S | | |
L — XnT
[ )\1X1TX1 NoxiTxe oo AxaTx,
T )\1X2TX1 )\2X2TX2 e )\nXQTXn
=Yy : : - : y
L AlanXl >\2XnTX2 ce )\nanXn
M O - 0
0 X -~ 0
=y' | .y =t ey A
0 0 - M\
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Multivariate Calculus and Optimization eigenvalue and eigenvector

e Conclusions

1. H is positive definite if and only if \; > 0 V1

2. H is negative definite if and only if \; <0 Vi

3. H is positive semidefinite if and only if \; > 0 V1
4. H is negative semidefinite if and only if \; <0 V1

5. H is indefinite if and only if some As are positive while others are

negative.
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Multivariate Calculus and Optimization eigenvalue and eigenvector

ex: Find the extreme value(s) of ¢ = —1.52% + 32 + 2y — y? — 322
and determine whether they are maxima or minima with the
eigenvalue test.

= ¢ =—3xr+32=0

set
G =2—-2y=0 = (7,7,Z) = (0,1,0)
set
q, =3r—62=20
set
-3 0 3 —3-A 0 3
= H= 0 -2 0 = 0 —2—=A 0
3 0 -6 3 0 —6— A

=—A+2)(A2+9A+9)=0

= A\ = —2, )\2:_r_9+3\/57 )\321_#5
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Multivariate Calculus and Optimization implicit function

P s(P)

Pl--N------

[y EP—— At each equilibrium point,
D(P, My)
Z(PM)=D(P,M)—-S(P)=0

1

1

1

1

1 1

1 1

1 1

1 1

1 1
Q@ Q@

Q: p=prun)?

. . dP ?
Q. If yes, what will T be £
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Multivariate Calculus and Optimization implicit function

ex: y= f(x) =222
= F(y,z)=y—222=0

X

ex: y = f(.??l,l'g) = m

= F(y,x1,22) =y(x1 +23) —21 =0

Q: Does there exist a function f: R™ — R (i.e., y = f(x),
x € R™) corresponding to the relationship defined by
F:R™ SR (e, F(y,x)=0) ?
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Multivariate Calculus and Optimization implicit function

e Implicit Function Theorem
If (1) F: R™! - R,
(2) all the first partial derivatives of F are continuous,
(3) OF (y,x)
dy

(3
then there exist N, (X) and N, (7)
and a function f: N, (x) — N, (7) satisfying

# 0, at the point (y,X) satisfying F'(y,x) =0,

F(f(x),x)=0, Vxe&N,(X)

Also, f and f;, © = 1 ~ m are continuous.
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Multivariate Calculus and Optimization implicit function

ex: F(y,x) =2>+y*—1=0
= F, =2y, F,=2x arecontinuous

= F, # 0 except when y =0

Fydy+ Fydx =2ydy +2xdx =0
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Multivariate Calculus and Optimization implicit function

ex: U= U(acl,xg) = Uo
= U(xbf(xl)) = UO> v T1 € Ne(x_l)

= Ui(wy, f(21)) doy + Us(z1, f(21)) f'(21) d21 = 0

/ Up(zy, f(xy
= fiz) = _Uzg%, fgﬂﬁlgg

= —MRSm.

T2

Ty = ==== -

N

0

xy

Ty
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Multivariate Calculus and Optimization implicit function

@ Note that the implicit function theorem is sufficient but not

necessary.
ex: Fy,z) = (x —y)3=0
= F, = 32% — 62y + 3y?

F, = —3a* + 6xy — 3y*
— F,(0,0)=0
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Multivariate Calculus and Optimization implicit function

e Implicit Function Rule
F(y,x) =0 with F,#0
= F,dy+ Fydx, + Fodxg + - -+ Fdx, =0
and dy = fidxy + fodxo+ -+ + frdry, [ cy= f(X)]
= (Fyfi + Fi)dey + (Fyfo + Fa)dao + -+ + (Fyfon + Fr) dy, = 0

= Fyfi—i-E:O, Vi

:>fz_axi— F, Vi
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Multivariate Calculus and Optimization implicit function

ex: Z(P,M)=D(P,M)—-S(P)=0

8Z(P,M) _ dD(P, M)
= —onr = onr >0
0Z(P.M) _ OD(P.M) _dS(P) _
or = 9P 4P
—~ P=P(M)

fhr=-5hop =0 = i = (85) (#f7) >0

ex: 22+ + 22 =1
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Multivariate Calculus and Optimization [IylolIR T IeATT]

e Implicit Function Theorem (Extension)
Given Fi(y,x)=0,i=1~n, yeR", xe R™ If
(1) function F', F% ... F™ all have continuous first partial
derivatives with respect to all the y and x variables.
(2) at the point (y,x) satisfying F'(y,x) =0, i =1~mn,

oFt 9rt .. oF!
1 2 n or L. ..
Oy1, 42, Yn) : ST
oF™ QF"  OF"
oyr Oyo OYn

then there exist an m-dimensional neighborhood N,(x)

in which all y;, 7 =1 ~mn, are functions of x.
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Multivariate Calculus and Optimization implicit function

ex: Given 22+ 92 +22=3 and 2+2y+32=0, arex and y
defined as functions of z around the point
(x=1,y=1, z=-1) ?

= Flz,y,2) =2 +13°+22-3=0
F*(z,y,2) =2 +2y+32=0

) Q) e 20 2y
= |J| = aan? 88}/2 e
Jx  Jy

which equals 2 at (x =1, y=1, z = —1)

= Thus, x = z(z) and y = y(z) around (1,1, —1)
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Multivariate Calculus and Optimization implicit function

ex: Y =C+1y+ Gy
C=a+pY-T)

T=~v+0Y

= Fl(Y,C,T,IO,Go,OL,ﬁ,’}/,(S) =Y -C-Ip—Gy=0
F2(Y,C,T,IO,G0,OZ,ﬂ,’Y,(5) :C_Q_B(Y_T) =0
F3(Y7C7T7I07G07aaﬂ7775) :T_’Y_(syzo

OFt oF' 9F!
g gk gl ||
= V=% g r |T| 8 1 B|=1HB-5#0
OF 9F* QF® -0 0 1
oYy oC 9T
= Y:Y(IO,GO,OZ,ﬁv’Ya(S)
C = C(Io, Go, a, B,7,0)
TZT(IO,GO;O"B”Y:(S)
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Multivariate Calculus and Optimization implicit function

e Implicit Function Rule (Extension)
Fi=0 = dFi=0,Vi

%d;ﬂ + - ?dyn = (del + - %dmm)7 Vi

Let dx,, = 0, Vk # 1, then

oFt OF! oYy _OF!
oyy Dy O 2
o oF" || ou O™
Byl Byn 8m1 51‘1
= ay’ = % =1~n and |J| # 0 guarantees a unique

solut|on.
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Multivariate Calculus and Optimization implicit function

ex: Fl(z,y,2)=2*+1y*+22—-3=0
F*(x,y,2) =x+2y+32=0

2vdr + 2ydy = —2zdz

ldr + 2dy = -3dz

2r 2y de/dz | | —2z

1 2 dy/dz | | —3

' —22 2
-3 2 6y — 4 .
= g_g _ S — 433 — 2; which equals 5 at (1,1, —1).

1 2
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Multivariate Calculus and Optimization implicit function

ex: FlZY—C—IO_GOZO
F2=C-a—-B(Y-T)=0
F3=T—~—0Y =0

dy — dC = dly + dGo
= —BdY + dC + BdT = da + (Y -T)dp
—5dYy + aT = dy + Yds
Let dIy = dGy = da = dp = dy = 0, then
1 -1 0] [ avjos 0
B8 1 B ||acjes|=]|o0
5 0 1] | or/08 Y
0 -1 0 sy
oy _ 1 _ -
~ 95 13m0 1 B|=1ym-
Y 0 1

which equals T_géy—_ﬁ at (Y,C,T).

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013

279 / 423



Constrained Optimization

Constrained Optimization

refer to textbook

Ch.12 Optimization with Equality Constraints
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(@ BTN PEI M finding the stationary values

@ max U(zy,xs) = 2129 + 214

s.t. 4z + 229 = 60
Way 1 :
r9 = 30 — 224
= U = 2,(30 — 221) + 221 = —22,% + 3214
= g—g = —da, +32%0 [ 1st-order condition |

=7,=8, Ty=14

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 281 / 423



(@ BTN PEI M finding the stationary values

@ max U(zy,xs) = 2129 + 214

s.t. 4xq + 2x9 = 60
Way 2 (Lagrange-Multiplier Method):
,C(.’L'l, T, )\) = (Z‘l.’L’Q + 2%’1) + )\(60 - 4.1U1 — 21‘2)

= £>\Z60—4I1—21‘28g0
Li=2+2—4NE0 [1st-order conditions]
set

£2:$1—2)\:0

= T =28, Ty =14
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(@ BTN PEI M finding the stationary values

e max U = 2% + 2zy + yw?
st. 2z +y+w? =24
T+w=28

= L =24 2zy +yw? + \(24 — 2z —y —w?) + (8 —x —w)
= Ly=2-220—y—wZ0 )

set

,C)\QZS—.’IJ—UJ:O

Lo, =20+2y—2\ — Xy By [1st-order conditions]
L, =2x+w?—X\ B )
set

L, =2yw —2\w — A =0

7

=7=8, 7=8, w=0, M=16, X=0
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(@ BTN PEI M finding the stationary values

@ max U = zyzw

st. x4+y+z2z+w=4

=L=xyzw+ N4 —2x—y—2z—w)

= E,\:4—x—y—z—wS§tO )
ﬁx:yzw—)\ng
L,=z2w— 220 [1st-order conditions]
£z:xyw—)\S§tO
szxyz—)\SgO )

=7=1, g=1, z=1, w=1, \=

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102
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Constrained Optimization second-order conditions

@ Determinantal test for a constrained extremum

1. Suppose there are m constraints and n variables.
2. Verify the signs of ’Fm-i-lla ‘Fm-&-Q’? Ty ’Fn| (: ‘Fl)

m is even: + + 4+ 4+
misodd:— — — —

3. Positive definite

mis even: — + — -+
misodd: + — + —

Negative definite
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Constrained Optimization second-order conditions

@ 2nd-order condition (the Bordered Hessian)

Case 1:
L = (129 + 221) + A(60 — 421 — 29)

=m=1, n=2 and

0 —4 -2
Hl=|-4 0 1];
-2 1 0

= [Hip| = [Ho| = [H| = 16> 0
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Constrained Optimization second-order conditions

o Case 2:

L= (2% +2zy +yw?) + M (24 — 22 —y — w?) + Ao(8 — x — w)

=>m=2,
0
0
7l =] -2
—1
—2w

n=3

0
0

-1

and
-2 -1 —2w
—1 0 —1
2 2 0
2 0 2w

0 2w 2y—2)

= |F2+1| = |H3| = |ﬁ| = —22<0

P. C. Roger Cheng (Econ, NCU)
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Constrained Optimization second-order conditions

o Case 3:
L=xyzw+AN4d—az—y—2z—w)
=m=1, n=4 and

0O -1 -1 -1 -1
-1 0 2w yw yz
Hl=| -1 2w 0 2w 2z |;
-1 yw 2w 0 2zy
-1 yz zz zy O

$|ﬁ1+1|=|ﬁ2|:2, |ﬁ3|=—3, |H4|:|ﬁ|:4
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Constrained Optimization the standard consumer model

@ max U = U(xy,x2)

S.t. 1Ty +p2xa =M

= E(xla T, )‘7p17p27m) - U(l‘h .132) + A(m — P11t _p2$2)

set
= Ly =m —pi171 — pavy = 0

£1:U1—)\pls§t0

set

_U_ A m
= MRS, =+ =582 =42
Ly =U; — Apy :O} P A P2

0 —p1 —p Z1 = T1(p1, p2, m)
=>\|J|=|-p Un Up |#0 = Ty=Ts(p1,p2,m)
—p2 Ua Uy A =X (p1,p2,m)

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 289 / 423



Constrained Optimization the standard consumer model

o Define L(p1,p2, m) = L(T1, T2, \, p1, P2, M)
= U(T1,T2) + MNm — p1Ty — paTa)

é% U1%+U2% T(m P1ZT1 — Palla)
A1 - 98—, 02

= (Uh —Xpl)% + (U2 — >\p2)%

+ (m — plfl — pgfz)% + X
=\
= ) measures the effect of a change in m on the optimal value of

the objective function £
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Constrained Optimization the standard consumer model

0d\ — pldl‘l — p2d332
—p1dX + Uridzy + Uradaxs
—p2dA + Uzrdxy + Usadas

0 —p1 —p2
= | —p1 U Ur2
—p2 Uz U

T1dp1 + Todps — dm
Adp1
XdpQ

T1dpy + Tadps — dm
= j\dp1
j\dp2

0  ZTidpi + Todpy —dm —po

L

:>dl'1=‘J‘

—D1
—D2

P. C. Roger Cheng (Econ, NCU)

Mathematical Economics 102
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Constrained Optimization the standard consumer model

@ The Price Effect ( Let dm = dp, =0)

L

Oxy _ duy
ﬁ%_dpl

1
/]

P. C. Roger Cheng (Econ, NCU)

0  Tidp
-p1 Adpy
—p2 0
‘dm:dpzzo

—D1
—DP2

(_ﬁ

—p2 ) 0 =
Ui | = 7] -p1 A
Uaa -p2 0
U — 0 —

12 iy b2
Usz —p2 Us

Mathematical Economics 102

Uiz
Ua2

Fall, 2013
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Constrained Optimization the standard consumer model

@ The Income Effect ( Let dp; = dp, =0)

0 —dm -po 0 -1 —po
= dxl = |—h —p1 0 Upp | = ﬁ —p1 0 Uis dm
-p2 0 U2 —p2 0 U

= a.fl _ dl’l
om dm dp1=dp2=0
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Constrained Optimization the standard consumer model

@ The Substitution Effect (Let dU = 0)
U= U(ZL‘l,Jfg) = dU = Uldl‘l + U2d$2 =0
= X(pldxl +p2dx2) =0

= fldpl + fgdpg —dm=20

Bl
oy U=U0 dp1 |lav=o and dpa=0

o DRl B
= A Ui :m()\

—p2 Uz
—-p2 0 U
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Constrained Optimization the standard consumer model

@ The Slutsky Equation

0xq 1 _ | —p1 Ur <! 0 —p
-7 + A
3])_ | | ( ' —p2 Us —p2 U )
_ 1 3 0 —D2 _ 1 | P Ura
U’ —p2 Uso |‘]| —p2 Us
_ On ((9371)
B apl U=U am
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Constrained Optimization the standard consumer model

e max U = U(xy,x2)

S.t. P17y + P22 =m

0 —p1 —p2
= |H|=| —p1 Un Up
—p2 U Uy

= —(p12U22 — 2p1p2Una +p22U11) >0

Let U(.'El,.TQ) = U() = Uidry + Usdxy = dUo =0

dry _ Uy _ _
= do, = U, — MR512<O
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Constrained Optimization the standard consumer model

dzy _ d ,dxy
= ot = A o))
_d /.U 1 ,dU; dU,
—dxl( 0, U (dx Us = 32 - Uy)
auy _ _ Ul
dr, — U + U G2 dx =Un 0,
ill_gf = Uy + Uzzgx2 =Uip — —U%}ZUI
2

Z;i% U22(U12U22 — 2U,Us Uy + Us?Uyy)

= 5\3(1712U22 — 2p1paUca + po?Us1)> 0
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Constrained Optimization the standard consumer model

e mnC =wL+rK
st. F(L,K) = Qo
= L=wL+7rK +\Q, — F(L,K)]
= Ly =Qo—F(L,K)Z0

set
,CL:’w—)\FLSéO F w
set = MRTS = —FL =
ﬁK:T—AFKZO K

Q: Write the bordered Hessian.

Q: Show all the iso-quant curves are negatively sloping and

convex to the origin.
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Constrained Optimization the standard consumer model

e (Homogeneous Functions)

A function f defined on RY is homogeneous of degree r if for
every t > 0 we have

f(txla tl’g,"' ) th) :trf(l'l,l’g,"‘ 71"N)-
ex: f(xyz)zg—i—Qz
. Y Y T
ox glayz) = L4 B2

)
ex: h(z,y,z) =22 + 3zy — yz
ex: L(z,y,2) = x> — 3vy + yz
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Constrained Optimization the standard consumer model

@ Suppose the production function y = f(x), x € RY, is

homogeneous of degree r, that is,

fltx) =1"f(x)
then this production function displays:

i. Increasing returns to scale if r > 1
ii. Constant returns to scaleifr =1

iii. Decreasing returns to scale if r < 1
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Constrained Optimization the standard consumer model

o Suppose that y = f(x),x € RY is a homogeneous function. If x;
and x, are any two points on the same level curve of the function
f and we multiply each of these points by the same factor ¢ to
get points tx; and tx», respectively, then both of these points will

also lie on a single-level curve.

K

Q2
Q1

\ 4
~

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 301 / 423



Constrained Optimization the standard consumer model

e If f is homogeneous of degree r, then its first-order partial
derivatives (0f/Ox;, i = 1...N) are homogeneous of degree
r— 1.

Proof: Note that f;(tx) = %J(C?E;:X)) ” 3]3(;5}()

f(txlvtx%'” thN) = trf(xhx%”' 7xN)

- %i[f(ml’m%”' Jtry)] = %[ﬂf(im,im,”' L, TN)]
d(tz;) .
= a(fzi) [f(tzy, tas, - tay)] &;) =t a%[f(xl,%... Jn)]

= filtzy,txe, -+ tan) =t fi(zy, 22, aN)

1/3 1/4
/3431

2/3 1/4
ex: f(xy,x9) = 23 /xz/

= fi(w1,22) = %xf
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Constrained Optimization the standard consumer model

o If Q = F(K, L) is a production function that is homogeneous of

degree 1, then all its average and marginal products depend only
on the capital-labor ratio.

Proof:
AP =9 = Lr(K, L) = PO Ly = PGk, 1) = f(k)
AP =% = —gg/ B = (k) /k

0
MPy = G = g [L- f(R)] = L (k) -} = F'&)
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Constrained Optimization the standard consumer model

e If @ = F(K, L) is a production function which is homogeneous of
degree r and has continuous first-order partial derivatives, then
along any ray from the origin the slope of all isoquants, or the
MRTS, is equal.

Proof:

Note the ratio K'/L is constant along any ray from the origin.
_ MPL(tK,tL) _ ¢ 'MPL(K,L)
© MPy(tK,tL) — " 'MPy (K, L)

_ MPy(K,L) _
= NP (K 1) = MRTS(K. L)

MRTS(tK,tL)
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Constrained Optimization the standard consumer model

o Euler’'s theorem
If f(x),x € RY, is homogeneous of degree r, then the following
condition holds:
fizy + foxo + -+ fyan =rf(21, 29, ..., TN)

Proof:
ftxy, teg, - Jtay) =t f(x1, 29, -+ ,2N)
= %[f(txbtx%' o 7tl'N)] = %[trf($1,l'2, e >$N)]
N (tx; .
= izzl[a(taxi)f(txl,tzg,--- Jtry)] % =rt" f(w1, 29, ,TN)

Since this condition holds for any ¢ > 0, it also holds for ¢t =1

N
= > filxr, e, san) - xy =rf(x, 20,0+, TN)
i=1
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Constrained Optimization the standard consumer model

@ A function is homothetic if it is a monotonic transformation of
some homogeneous function, that is,

flx1, 20, ,xn) = h(g(z1, 22, -+ ,zN)) , where A/(z) > 0
ex: f(r, ) =1+ V20,12 = h(z) =1+ =z
ex: f(xr,22) = (01*Bx! ), r>0 = h(z)=2"

L _ W)
ThUS, f2 h/(Z) - go g
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@ The elasticity of substitution between inputs for a production
function @ = F(K, L) which has continuous marginal product
functions is defined as
o dIn(K/L)

~ dln(w/r)
K

A

>
>

L
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Constrained Optimization the standard consumer model

relative change in (K/L)
relative change in (w/r)

o=

d(K/L)

_ (K/L) _din(K/L) _ dIn(K/L)
dw/r) — dln(w/r) — dIn(MRIS)

(w/r)
ex: F(K,L) = K*3L'/3
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Integration

Integration

refer to textbook

Ch.14 Economic Dynamics and Integral Calculus
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Integration indefinite integrals

@ Suppose that %F(m) = f(x). When the derivative f is

known, we can determine the primitive function F.

= /f(x)dx =F(z)+C

where [ is the integral sign
f(z) denotes the integrand

C is referred to as the constant of integration

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013

310 / 423



@ Rules of indefinite integration

Rule 1 (Power rule)

1
/x”dx:—x”H—I—C, n# —1

n+1

ex: f(r)=2" = /x3dx = ;lx‘l +C

ex: f(z)=1 = /1da:=.7c—l—C’

ex: fla)=— = /x_4dx = Lx_?’ +C
' ! (=3)

2
ex: f(r) = Vi3 = /x3/2dx = 5x5/2 +C
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(e indefinite integrals

Rule 2 (Exponential rule)

/exd:vze“—l—C’

and /f’(:v)ef(’”)dx = /@

ex: f(r) = 2e* = /2e2zd:c—62’”—|—0

ex: f(r) = (2z) exp(z?) = /290 exp(x

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102
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dx = exp(z
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Rule 3 (Logarithmic rule)

1
/—dmzlnx—kC, x>0
x

and /g((xx))dx =lng(x)+C, g(x)>0

2 2
ex: f(l‘):E = /Edl'ZQIIll’—{—C, z >0

ex: f(x)= e = / e dr = In(72* +5) + C

Tt +5 72’ +5
x
ex: f(z)=
@) =
z %ln(w2—1)+0, x>lorx<—1
= ———de=1q ]
7 —1 an(l—x2)+C, -l<z<1
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(e indefinite integrals

Rule 4 (integral of a sum)

Ju@ + g@las = [ f@do+ [ gloyts

Rule 5 (integral of a constant multiple)

/kf(a:)da::k’/f(x)dx

ex: /(33&2 + 82°)dx = 3/x2dx + 8/x5dx

= 3(32% + C1) + 8(§% + C)
=2? + 328+ C
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(e indefinite integrals

Rule 6 (the substitution rule)
Jurtw - Goide = P+

Proof
d du du

d

)= [@F(U)] () =) (o)
ex: /6x2(a;3 +2)%dz = Letu=2"+2, then Z—Z = 327
= /2(3x2)(x3 +2)%dx = 2/u99(3—2)dﬂc

2 100 1 3 100
= C=— 2 C
100“ + 50(3: +2)"" +
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(e indefinite integrals

Rule 7 (Integration by parts)

/vdu:uv—/udv

Proof

d(uv) = vdu + udv

:>/ uv) /vdu—ir/udv
:uv:/vdu—k/udv
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Integration

Let v=2 and du= (x+1)"%dz,

2

ex: /x(x+1)1/2da; =
then dv =dxr and u = 3(35 +1)3/2

:x[§($+1)3/2} —/%(w—i—l)?’/zdx

= 2a(z+ 122 - (@ + 1)+ C
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(e indefinite integrals

Let v =Inz and du=dx ,

ex: /lnxdm =
then dv = %d:c and u==x

1
:xlnx—/x(gdx) =zrhzr—-2+C

Let v =2 and du = e“dx ,

ex: /:Ue”‘"dx =
then dv =dx and u =e¢e*

:xe“’—/exdxzfﬂex—ew—i—C
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Differential Equations

Differential Equations

refer to textbook

Ch.15 Continuous Time: First-Order Differential Equations

Ch.16 Higher-Order Differential Equations
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Differential Equations 1st-order linear differential equations

e First-Order Linear Differential Equations

d
W 4wty = wit)
or
y+ult)y =w(t)
Note that ( dy/dt ) Lst-order

( —

( d*y/dt* ) — 2nd-order
( —  degree 1
( —

degree r
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Differential Equations 1st-order linear differential equations

Case 1 (Homogeneous with Constant Coefficients)

. dy
I +4y =0

dy_

:>/dy—/

= Inly|=—4t+C or |yl=eC

dy = —4dt

= y(t) = de . ¥ = £Ae™H [ general solution |

= y(0)e % [ definite solution |
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Differential Equations 1st-order linear differential equations

Case 2 (Nonhomogeneous with Constant Coefficients)

. dy

( (reduced eq.) flgz +2y=20
= y.= Ae? complementary function
< dy
(complete eq.) dt +2y==6
L try y?k Yp =3 particular integral
= y(t) =y +y, = Ae7* +3 [ general solution ]
= [y(0) —3]e"* +3 [ definite solution ]
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Differential Equations 1st-order linear differential equations

proof:

d
d‘g—kay—b = Yp

d
d‘?—kay—o = Ye

Let y=vy,+y., then

d dy, _ dy.
&= G v) ="+

ay = a(yp + ye) = ayp + ay.

d d dy
= Y tay= (32 +ay,) + (SFe +ay) =b
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Differential Equations 1st-order linear differential equations

L dy
ex.%—

Way 1

/dyz/?dt = y(t)=2t+C=y(0)+2¢
Way 2

dy _ _

Ir =0 = y.=A4

dy

dt

=2 = y=2
try y = kt

= y{t)=y.+y=A+2t =y(0)+2¢
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Differential Equations 1st-order linear differential equations

Case 3 (Homogeneous with Variable Coefficients)

d
ex: d—% + (3t)y =0

= /idy:/(—&f?)dt

= Inly|=-3+C

= y(t) = A"

y(0)e="
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Differential Equations 1st-order linear differential equations

Case 4 (Nonhomogeneous with Variable Coefficients)

e Exact Differential Equations

We say that

M dy+ N dt =0
is exact if and only if there exists a function F'(y,t) such that
M:‘?TFandN:Q%,(oquM Tlsmet)

= dF(y,t) = 7dy+7dt—0
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Differential Equations 1st-order linear differential equations

Stepl F(y,t) :/Mdy+1/1(t)
Step 2 %[/Mdy—l—w(t)] =N

Step 3 Solve for ¢ (t)

Step 4 Replace ¥(t) into F(y,t) and then F(y,t) =C
will be the solution.
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Differential Equations 1st-order linear differential equations

ex: (2yt)dy + y*dt =0

= %(Zyt) =2y = %(gﬁ) Exact !

Step 1

Step 2
Step 3

Step 4

Fly.1) = / (2ut)dy + (1) =ty + Cr + (1)

Dl + O+ o) = + 0 () = 9> = ¥(1) =0
@/)(t) =y
F(y,t) =ty* + C, + Cy = Cy

= ty?=C or y(t)== %
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1st-order linear differential equations
ex: (t+42y)dy + (y+3t*)dt =0

= %(t—k 2y) =1 = %(y—}-?)tz) Exact !

Step 1 F(y1) = / (t+ 2y)dy + 0(t) = ty + 5 + Cy + (1)
Step 2 %[ty+y2+01 +t)] =y +¢'(t) =y + 3¢t
= /(t) = 3t
Step3 () =t2+C,
Stepd F(yt)=ty+y*+C1+ 3+ Cy=Ch
:>y2+ty+(t3—0):0
() = —t+ \/t2 -0)
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1st-order linear differential equations
What if 90 £ 2N 2
° at if =7 #* oy
ex: (2t)dy +ydt =0
= %(2@:27&1:%?;

ex: 2(t* + 1)dy + (3yt*)dt =0

= G20 +2) = 602 £ 32 = 5 (3y1%)

ex: (4y3t)dy + (2y* + 3t)dt = 0

= Syt =4 # 8y° = 229" +31)
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Differential Equations 1st-order linear differential equations

= Look for the possible Integrating Factors !
ex: (2ty)dy + y*dt =0

0 0 (,2
= 2ty) = 2y =

ot (2ty) =2y = 7.(v°)

ex: 2(t% + 1)ydy + (3y*t*)dt = 0

2t
= G+ 1)y = 612y = 3%(3y2t2)

ex: (4y3t?)dy + (2y*t + 3t*)dt = 0

= Syt = syt = L(2y't+ 38)
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Differential Equations 1st-order linear differential equations

@ Integrating Factors
W1 uty = w(t) = dy+ [ult)y - w(t))dt =0

= I(t)dy + I(t)[u(t)y — w(t)]dt =0

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013

332/ 423



Differential Equations 1st-order linear differential equations

ex: 2tdy + ydt =0
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Differential Equations 1st-order linear differential equations

ex: 2(t3 + 1)dy + 3yt?dt = 0

_ 4y 3¢2

3t
[ANSTGESY

3t
= |.F. = exp[/ 2(153—_{_1)0%] = eéln(t3+1) — (tS + 1)%

Check:

dy + 3—t2ydt =0
2(t* + 1)

= (14 1)2dy + SP(5 + 1) 2ydt =0

= 2B +1)3) = 3B +1)7338) = aﬁ[ £2( + 1)~ 2]
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Differential Equations Bernoulli equation

@ Bernoulli Equation

Y+ ROy =FOy" . m#0. 1.

Let z =9y ™, so that

dt — \dy’\dt dt
= .42, Ry = F(1)
[ —m  dt
or Ly (1-mR(t)z = (1-m)F(t)
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Differential Equations Bernoulli equation

d _
ex: L+hy=1 = vy +Gy2=1

= Let z =y~ 2, so that =

y/\dt dt
= _Lz)d—gﬂ%)zﬂ or 424 (F2):= 2
— 1
~ IF :exp[/(T)dt]— =

t + t
Check
S1] = (21t = LGP+ 2]

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013

336 / 423



Differential Equations Bernoulli equation

(F)dz+ [(58)2 +2()]dt = 0

.

Step1 F(t) = / (%)dz F(t) = 25+ 0(0)

Step 2 {172 + w(t)] = (~2)t7 + /(1) = ()2 +2(H)

= /(t) =2t
Step 3  Y(t) = (—2)t7!

Stepd F(zt)=t2z+(-2)t7'=C
= 2=2+Ct?=y?

3 1
iy@_iVm+m2
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Differential Equations phase diagram

e Phase Diagram z—% = f(y)

dy _ dy _
ex: s y—17 = %—y——7

= y.=Ae" and y,=7
= y(t) = Ae' +7=[y(0) = T]e" + 7
Ey =0 (equilibrium)

dy
dt

/% 0
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Differential Equations

B
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I COIEINSCTENHEM  Solow growth model

Solow Growth Model

oY =r(K,L) L y=L F(

or y= f(k)

~=

Ly=1L 1)

SO =k f' (k)

, 7z k
ke (k) Fgg = a%f (k) = f£ )
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I COIEINSCTENHEM  Solow growth model

Solow Growth Model

o 1= 15K = K+ oK 0<d<1)
o S=sY (0<s<1) IZS
O’YLE%:TL

= sY = K+ 0K = (yc +0)K  (Note that vic = 7 + 1)

= sy=(w+n+dk=k+ (n+0)k

or k=sf(k)— (n+0)k [Solow equation]
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Solow growth model
Solow Growth Model

(n+0)k
f(k)
sf(k)
ke Tk

kLa—%\
0 3 k
( \sf(k)(nJmﬁ)k
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I COIEINSCTENHEM  Solow growth model

Solow Growth Model

o i =k/k=sf(k)/k— (n+0)

n-+0o

sf(k)/k

kpoor krich k*
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I COIEINSCTENHEM  Solow growth model

Solow Growth Model

o Y, = k/k=sf(k)/k— (n+0)

0 >k
Fooor  Krich ]\
Tk

@ Hypothesis: Poor Economies tend to grow faster per capita

than rich ones.
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I COIEINSCTENHEM  Solow growth model

Solow Growth Model

0 k
Vk(poor)
e saving rate e production function
e depreciation rate e population growth rate
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I COIEINSCTENHEM  Solow growth model

Solow Growth Model
ex: k= skO" — (n+0)k

= Gy (n+ o)k =5k or  KOT(LE) 4 (n+ K08 = s

dt
_ 103 dz _ —o0.7¢dk
Let z=£k"" sothat = =03k (dt)
hence % +0.3(n+0)z=0.3s
+0 n +

1

n
k() = {5 + R(0)°2 = g 0o |0

= 2(t) = =3~ +[2(0) — =3 ] e 03(n+3)t oy

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013

346 / 423



I COIEINSCTENHEM  Solow growth model

Solow Growth Model

ex: Maximize ¢ = f(k*) —sf(k*) = (1 —s)f(k")
= Since sf(k*) — (n+d)k* =0 at equilibrium (WHY?)

therefore, k* =k*(s) and dk™ _ _ f(E)

ds sf'(k7) = (n+9)

= =0+ (=) ) - (k)

= —f(k*) + (1 —8)f (k) - <— Sff(k*])c(f*()n - 5))

A N P
~ (~srtEheg ) U - (o)

Mathematical Economics 102 Fall, 2013
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I COIEINSCTENHEM  Solow growth model

Solow Growth Model

A\
ol

k*(SGOLD)
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Differential Equations Nth-order linear differential equations

Nth-Order Linear Differential Equations

dn dn—l d

or Yy (t) +ay" V) + -+ a1y (t) + any =b

1. Look for the particular integral: y,

ex: y'(t) +y'(t) — 2y(t) = =10ty y:;: koy,=5 0
ex: () +y(t) = —10 ty y—=k 0=-10 X
E—,

try y, =kt y,= —10¢ (0]
ex: y'(t) = —10
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Differential Equations Nth-order linear differential equations

2. Solve the complementary function: 7.
y'(t) + a1y’ (t) + azy(t) = 0
o Let y.= Ae™, sothat y/(t) =rAe™ and y'(t) = r*Ae"

= Ae"'(r’ +air +as) =0, wecall 72 +a;r+a;=0 asa

characteristic (or auxiliary) equation. (Can A = 0 happen?)

—a; £ vV a2 — 4as
= T, Ty = 2 = Y = A1€r1t, Yo = A26T2t

= Yo=Y+ yo = Ajett + Age™!
(Why not just pick any one of them?)
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Differential Equations Nth-order linear differential equations

e Case 1. Two distinct real roots (a? > 4as)
ex: (1) +y'(t) —2y(t) = —10
=r+r-2=0r+2)r—-1)=0 = r=1 rp=-2
= y.= Aret' + Age™®  and  y(t) = y.+y, = Are't + Age ™ +5
If we let y(0) =12 and ¢'(0) = —2, then
A1+ Ay +5=12 and A+ (—2)Ay = -2

= A =4, Ay =3, and y(t) =4er +3e7 2 +5
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Differential Equations Nth-order linear differential equations

o Case 2. Two repeated real roots (a} = 4ay, = r= —%1)

ex: o' (1) + 6y (t) + 9y(t) = 27
=4+ 6r+9=>r+3?=0 = r=rp,=-3

= Yo = A1e73 + Age 3t = Age™3

(Only one constant can be identified!)
If we let y. = Ayte™ (Can it be another solution?)
then y(t) = (A3 + Ast)e 3 +3

(Solve the definite solution given y(0) =5 and y/(0) = —5)
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Differential Equations Nth-order linear differential equations

Trigonometric Functions and Complex Numbers

Z:a+bz':\/a2—l—b2( a ! z)
Va2 +bv Va2 + b2

= R(cosf + isinf)

e sin?f 4 cos?f =1
@t o sin(f; £+ 6y) = sin by cos by £ cos b sin by
cos(fy + 6;) = cos By cos Oy F sin Oy sin by
e 7175 = RiRy (cos(by + 02) + isin(0; + 62))
o 7" = R"(cosnd +isinnd)

° diesinezcos& diécose:—sine
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Differential Equations Nth-order linear differential equations

Trigonometric Functions and Complex Numbers

f(0) =sin@ f(0)=0 g(0) = cos b g(0) =1
f'(0) = cost flo=1 4 g

(@) =—sing  f"(0)=0 g"(0) = —cosf ¢"(0)=-1
J"(0) = —cos®  f"(0)=-1 g 9
fA0)=sind  fD0)=0 ¢B@) =coshd gH0)=1

S~

0> 05 97 0asn— oo
31 5 7
2 4 6

cosf = 1—%[4-%_%[_1_...
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Differential Equations Nth-order linear differential equations

Trigonometric Functions and Complex Numbers

v o_ 1. R
e’ = +1'+—+§+—+§+
.5
@0 _ (i0) (i) (i) (i) = (i0)
e TR TR TR TR
2 -n3 4 -n5
— 14if— 0 10 0 10

PTE TR TR T

= cosf+1isinf

10— cosfh—isinf

Z = atbi = R(cosf £isinf) = Re*?

cartesian form polar form exponential form

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Differential Equations Nth-order linear differential equations

e Case 3. Two (conjugate) complex roots (a} < 4as)

—ay = /4as —ai? 1 )
Ty, re = 1 22 L " —a+pi

ye = Arel@tIp Agelomit
et <A1ewt - Age_mt>
= ™ [A;(cos Bt + isin Bt) + Az(cos Bt — isin ft)]
= ™ [(A1 + Az) cos Bt + (A1 — As)isin B]
= e [As5cos Bt + Agsin jBt]

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Nth-order lincar differential equations
@ Case 3. Two (conjugate) complex roots (af < 4ay)
ex: y"(t) + 2y (t) + 17y(¢t) = 34, y(0) =3, 3/'(0)=11
= 4+ +17=0 = r=-1+4i
= y(t) = e '(Ascos 4t + Agsin4t) + 2
and y/(t) = —e (As cos 4t + Agsindt) + de~(— A sin 4t + Ag cos 4t)
y(0)=A5+2=3 and ' (0)=—A5+44=11

y(t) = e '(cos4t + 3sin4dt) 4 2

1 3
= V10e™! (—cos4t+—sin4t +2
v 10 v 10

= V10e 'sin(4t + ¢) + 2
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Differential Equations Nth-order linear differential equations

The Dynamic Stability at Equilibrium

@ Case 1. Two distinct real roots

Yo = A1/t + Age!

@ Case 2. Two repeated real roots

Ye = (Ag + A4t)€7’t

@ Case 3. Two (conjugate) complex roots

Yo = (A cos St + Ag sin St)

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Differential Equations

70 6 25000
t e
60 |-
20000 |
50 |
0L 15000
80 r 10000
20
t 5000 -
T ez \ t6
0 0
0 1 2 o 1 2| 3 4 s
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Differential Equations Nth-order linear differential equations

. explosive
s fluctuation 002 g g
2 L
L/ \
0
N
2 L eOt sinf

uniform

3 L ef0.0ZI sinf
a L damped
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Differential Equations Nth-order linear differential equations

Differential Equations with a Variable Term

ex: Y +5y +3y=6t2-t—-1 = yp7

y = at> + bt + c ...x3

y = 2at + b ...x5

' = + 2¢ ...x1
6t2 —t—1 = 3at?+ (10a + 3b)t + (2a + 5b + 3c)

= a=2, b=-7, ¢=10

= y,=22-7t+10 O

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Nth-order linear differential equations
Differential Equations with a Variable Term

ex: y' +5y =6t —t-1 = y,7?

y = at® + bt + c ..x0
y = 2at  + b ..x 5
Yy = + 2a ox 1
62—t—1 = 10at+ (2a+5b) X
y = atd 4+ b2 + ct...x0
y = 3at?>  + 2bt + c¢...x 5
y' = + 6at + 2b...x1
6t>—t—1 = 15at? + (6a + 10b)t + (2b + 5c¢)
_ 2,3 _ 17,2 8
= u=30-4 -5t O
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Differential Equations Nth-order linear differential equations

Differential Equations with a Variable Term

ex: ¥ +3y —dy =21 = yp7

Yy = Be™ .. x -4
y = —4Be™ ... x 3
Yy = 16Be™ ... x1
24t = 0o X
y = Bte™ ... x —4
y = (1 —4t)Be ™ ...x 3
Yy = (-8 +16t)Be 4 ... x 1
2¢e# = _5Be ¥ = Yp = —_52t6_4t O

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Differential Equations Nth-order linear differential equations

Differential Equations with a Variable Term

ex: ¥y +y +3y=sint = yp?

y = Ajsint 4+ Aycost ...x 3
y = —Agsint+ Ajcost ...x 1
y' = —Aisint— Aycost ...x 1
sint = (241 — Ag)sint + (A1 + 2A3) cost

= yp:%Sint—%cost (0]

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Differential Equations Nth-order linear differential equations

Higher Order Linear Differential Equations

Y +ay"VE) + a1y +ay =0
= rmtar ot a, g rta, =0 = T, T,
e distinct real roots: >, A;e"
o repeated real roots: ) Ajt/e
@ conjugate complex roots: ¢ (A cos 5t + Bsin t)

o repeated complex roots: Y, t"e®!( Ay, cos ft + By, sin 5t)
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Differential Equations Nth-order linear differential equations

Higher Order Linear Differential Equations

ex: y® 4 69" + 14y + 16y + 8y = 24
= 1t 4+ 6r® + 1412 + 16r + 8 =0
(r+22r*+2r+2)=0 = r=-2, —2, —1=£4
= y(t) = Aje ™ + Agte " + e '(Aszcost + Aysint) + 3

ex: (2r+3)3(r—2)(r*+r+12=0

Ale_l'St + A2t€_1'5t + A3t26_1'5t 4 A462t
+ e V2 Ay cos(V3/2)t + Agsin(v/3/2)1]
+ e V2[A; cos(\/g/Q)t + Ag Sin(\/§/2>t]

Ye =

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Nth-order linear differential equations
Convergence and the Routh Theorem

@ The real parts of all of the roots of the nth-degree polynomial
equation

agr” +arr" o a,r+a, =0
are negative if and only if the first n of the following

a; as as
ar as

sequence of determinants  |a,]; ; ap as as |;

ap a2
0 a1 as

ay az as ar
a as a4 Q ..
’ 6 1.... all are positive.
0 a; as as

0 apgp a2 Qg
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Differential Equations Nth-order linear differential equations

Convergence and the Routh Theorem

ex: 146 +14r2+16r+8=0

a aj
= |6] = 6;
6 16 0
1 14 8
0 6 16
0 1 14

an as ayg
6 16 0
6 16
= 68; 1 14 8 | =800;
1 14
0 6 16
0
0 = 6, 400;
0
8

= The real parts of all of the roots are negative! (stable)

P. C. Roger Cheng (Econ, NCU)

Mathematical Economics 102 Fall, 2013
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Differential Equations Nth-order linear differential equations

Convergence and the Routh Theorem

ex:
8r8 43617 + 461 — 4175 —222r* —367r3 — 34212 — 189r — 54 = 0
ap  ap az a3 a4 as ag ar  ag
36 —41 36 —41 —-367
= fBel=36 | L o |=198% |8 46 222 | = 100,67
0 36 —41

36 —41 -367 —189
8§ 46 —222 342
0 36 —41 =367
0 8 46  —222

= 4,561,920; ...
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Difference Equations

Difference Equations

refer to textbook

Ch.17 Discrete Time: First-Order Difference Equations

Ch.18 Higher-Order Difference Equations

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Difference Equations 1st-order difference equations

First-Order Difference Equations

@ AYt =Ye+1 — Yt ex: Ay =2
= Y1 — Y =2 OF Y1 =Y+ 2
Iterative Method

Y1 = Yo +2
v2 = y1+2=wWo+2)+2=yo+2(2)
y3s = y2+2=(yo+2(2)+2=uyo+3(2)

yo = Yo+i2) =yo+2t
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Difference Equations 1st-order difference equations

First-Order Difference Equations

ex: Ay =—0.1y, =

Iterative Method

Al
Y2
Y3

Yt

P. C. Roger Cheng (Econ, NCU)

Yer1 = 0.9y,

(0.9)"yo

Mathematical Economics 102 Fall, 2013
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Difference Equations 1st-order difference equations

First-Order Difference Equations

@ Y1 +ay =c complete equation:  yir1 +ays = ¢

Tyy=k = yp=15, (@#-

reduced equation: Y11 +ay; =0
gy =Ab' = y.=A(—a)

= yt:A(—a)t+1_|_La:{yo—1+La] (—a)' + 1_|C_a

ex: Ypi1 — oY = 1
= y=AG)—t=@w+}H -1

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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ISRV EM  The Cobweb Model

The Cobweb Model

@ Consider a situation in which the producer’s output decision must

be made one period in advance of the actual date.

= Qu=a— P,  (a,f>0)
Qst =—v+0P_1 (7,6 >0)

= BP+0Pi=aty o Pyt b=

™

:>pt=(P0_57)(75) %+g

V

explosive
= uniform  oscillation if § =7
damped <

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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ISRV EM  The Cobweb Model

The Cobweb Model

A > Po

Po

<
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Difference Equations Higher-order difference equations

2nd-Order Difference Equations
Ytro + a1Ys11 + aoy; = ¢ complete equation
1. Look for y,

—

ex: Yo — Y1 + 4 =6 try o=k y,=3 O
—

ex: Yo+ Y1 — 2 =12 try yy=k 0=12 X
.

try yo =kt Yy, =4t (0]

ex: Yrro — 2Yry1 + Yt =95
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Difference Equations Higher-order difference equations

2nd-Order Difference Equations

2. Solve y,

Yiro + a1yir1 + a2y = 0 reduced equation
o Let 1y, = Al so that w0 = Ab'*? and vy, = Ab'*!

= AV'(D* +aib+ay) =0, wecall B> +ab+a;=0 asa
characteristic (or auxiliary) equation. (Can A = 0 happen?)

_ 2 _
a2 2a1 daz = 1= Aby, Y2 = Agby!

= bl, by =

= Yo =1y +y2 = A1b" + Agby
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Higher-order difference equations
2nd-Order Difference Equations
e Case 1. Two distinct real roots (a? > 4as)
ex: Yo + Y1 — 2y = 12

= Y=Y+ yp = A1) + Ax(—2)" + 4t
If we let yp =4 and y; =5, then
A1+A2:4 and A1—2A2+4:5

= A1 =3, Ay =1, and y; =3+ (—2)" + 4t

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Higher-order difference equations

o Case 2. Two repeated real roots (a? =4ay = b= —%)
ex: Yo + 0y + 9y =4
= 0P 4+6b+9=(0b+32?=0 = b =by=-3

= Yo = Ai(=3)" + Ax(=3)" = A3(=3)’
(Only one constant can be identified!)

If we let y. = A4td* (Can it be another solution?)

then Y = (Ag + A4t)(—3)t + i

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Difference Equations Higher-order difference equations

e Case 3. Two (conjugate) complex roots (a] < 4as)

_ — a2
b1, by = a %@ <l Zzoz:l:ﬁi

ye = Aj(a+ i)+ As(a— pi)t
= AiR'(cos 0t + isin0t) + Ay R'(cos 0t — isin 6t)
= R'[(A; + Ag)cosOt + (A; — Ag)isin 6t)]
= R'(Ascos0t + Agsin 6t)

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Difference Equations Higher-order difference equations

e Case 3. Two (conjugate) complex roots (a7 < 4ay)
ex: Ypo + zllyt =5 = y,=4
P+i=0 = b=+li=1(cosT+isin})
= = (%)t(Ag, cos %t + Agsin %t) +4
ex: Yo — 4y + 16y, =0 = y,=0
PP —4b+16=0 = b=2+23i=4(cos § isinF)
=y, = 4'(As cos %t + Agsin %t)

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 381 / 423



Difference Equations Higher-order difference equations

The Convergence of the Time Path

@ Case 1. Two distinct real roots

Ye = Arbyt 4 Agby?

@ Case 2. Two repeated real roots

Yo = (Az + Agt)l'

@ Case 3. Two (conjugate) complex roots

Y. = R'(As cos 0t + Agsin 0t)

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Difference Equations

nonoscillatory
b>1 0<b<1
divergent b=1 convergent
0 1 2 3 4 0 1 2 3 4 ) 1 2 3 4
oscillatory
b=-1
-1<b<0 b<-1
convergent r divergent
0 1 2 3 4 o 1 2 3 4 [ 1 2 3 4

P. C. Roger Cheng (Econ, NCU)

Mathematical Economics 102



Difference Equations Higher-order difference equations

Difference Equations with a Variable Term

ex: Yo+ Y1 — 3y =17 = yp?

vy = B(7Y ox =3
Y1 = BT =17B(T) ox 1
Y2 = DB(T72) =49B(T) B |
" = 53B(T)

_ _ 1=

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Difference Equations Higher-order difference equations

Difference Equations with a Variable Term

ex: Yuo — dYpy1 — 6y =2-6" = yp?

Yt
Yt+1
Yt4+2

B(6%)
B(6'1) = 6B(6")
B(6!72) = 36 B(6%)

26!

Yt

Yt+1
Yt+2

o X

Bt(6")
B(t+ 1)(6!1) = 6B(t + 1)(6°

2.6

P. C. Roger Cheng (Econ, NCU)

B(t +2)(6"2) = 3GB(t +2)(61)
2B(6) = t6) O

Mathematical Economics 102

...x —6
..x =5
..ox 1
..x —6
..xX =5
.x 1
385 / 423
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Difference Equations Higher-order difference equations

Difference Equations with a Variable Term

ex: Yo+ 5y + 2y =t° = yp?

vy = at’+bt+c LoX 2
Yer1 = a(t+1)>+b(t+1)+c
= at’+ (2a+b)t+ (a+b+c) ...x 5
Yrp2 = a(t+2)2+b(t+2)+c
= at? + (4a + b)t + (4a +2b +¢) S |
t2 = 8at? + (14a + 8b)t + (9a + 7b + 8¢)
:>a—é,b 5—7 C:21536 = yp:%t2—3—72t+% (0)
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Difference Equations Higher-order difference equations

Higher Order Linear Difference Equations
Yern + Q1Ytin—1+ -+ Q1Y + anys = b

= b +ab" o dabta, =0 = by,by, by,

o distinct real roots: > A;b'

@ repeated real roots: Zj At

@ conjugate complex roots:  R'(Acosft + Bsin0t)

o repeated complex roots: >, t" R'( Ay cos 0t + By, sin 0t)
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Difference Equations Higher-order difference equations

Higher Order Linear Difference Equations
ex: Y43 — %ym + %yt-H + S%yt =9
= B = L0+ fbt g5 =0
(20— 12@8b+1)=0 = b=4 1 1
= g = A(S) + Ast(3) + As(FL) + 32
ex: Ypya + 6yrys + 14ypo + 16y11 + 8y = 24

= b+ 603 + 1462+ 16b+8 =0
(b+2)2b*+20+2)=0 = b=-2, —2, —1+i
=y = Ay (—2)'+ Ast(—2)' 4+ (v/2)!(As cos %IEH—A4 sin %Ilt)—i—%
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Difference Equations Higher-order difference equations

Convergence and the Schur Theorem

@ The roots of the nth-degree polynomial equation

agh” + a1t + -+ ap_1b+a, =0
will be less than unity in absolute value if and only if the following

n determinants

Ap= | 71 Tno2
" an 0
an—1 an
al a2

P. C. Roger Cheng (Econ, NCU)

an

Ap—1
Gp
a
ao
ay
az
0 0 An
ao ay ap—1
0 ag An—2
0 0 ag

Mathematical Economics 102

all are positive.

Fall, 2013
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Difference Equations Higher-order difference equations

Convergence and the Schur Theorem

ex: b24+304+2=0
aop ay az

1023
310 2 :

T = d|vergent!
2 0 1 3
3 2 0 1

0 -1 1

1 6 0 1

-1 0 6

1 —1.0

= All roots are less than unity in absolute value! (convergent)
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Simultaneous Equations

Simultaneous Equations

refer to textbook

Ch.19 Simultaneous Differential and Difference Equations

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 391 / 423



Simultaneous Equations

Transformation of a Higher-Order Dynamic
Equation

ex: Yers t QY2 + QY1 + a3y = C
Zt+1 +ai1z; +axxry +azyr =c
Ti41 —2t =
Yir1 —Xy =0
ex:

YO (1) + ar1y”(t) + axy/(t) + azy(t) = ¢

2Z(t) +aa'(t) +agz(t) +asy(t) =c
2/ (t) —z(t) =0
y'(t) —a(t) =0

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102

Fall, 2013 392 / 423



ST ENEIEN IR S Simultaneous difference equations

Simultaneous Difference Equations

ex: Ty + 63'},5 + 9yt =4

Y1 — Tt =0
1 0 Tt41 4 6 9 Tt o 4
01 Y+l -1 0 Yt 0

1. Guess the particular integrals: z, and y, (Try constants)

MHEEHER
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ST ENEIEN IR S Simultaneous difference equations

HESEEIHEE

2. Solve the complementary functions: . and .
= Let z; = mb' and y, = nb'

I E R
_(b[;g__+
SN [HeH

P. C. Roger Cheng (Econ, NCU)

Mathematical Economics 102

Fall, 2013
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ST ENEIEN IR S Simultaneous difference equations

b+6 9
+1 =0=0b>+6b+9=(b+3)?
= by =by = -3, 3 ) L - 0 = m:n=-3:1
-1 -3 n 0
N (2. | [ —343(=3) — 344t(-3)!
Ly || As(=3)' + Agt(=3)
. (2 | [ —343(=3)" — 344t(~3)" +0.25
u || As(-3)' + Aat(—3)" 4 0.25
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ST ENEIEN IR S Simultaneous difference equations

ex: Ty -z —1/3y, = —1
Tl + Yer1 —1/6y, = 17/2

o Y e e e | Y
11| |y 0 —1/6 || w 17/2

1. Guess the particular integrals: z, and y, (Try constants)
1
T 0 —-1/3 -1
Up 1 5/6 17/2

1[5/ 173 -1 1] [s
S8 -1 o0 17/2 | | 3
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ST ENEIEN IR S Simultaneous difference equations

A e

2. Solve the complementary functions: . and .
= Let z; = mb' and y, = nb'

10 mbitl -1 -1/3 mbt
11 nbttl * 0 -1/6 nb'
Ol SR L]
11 0 —1/6 n 0
b—1 13 [[m] [o
b b-1/6 || n | [0

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102

Fall, 2013
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ST ENEIEN IR S Simultaneous difference equations

b—1 -1/3 54 1 1 1
=2 — =0b-3Hp-
b b—1/6 "t =033
172 —1/3 ] [ m ]
= by =1/2, 2B M g L =23
12 13 || n |
PR
~1/3, e I O
o 1/3 1/6 || n |
1T Ly 1yt
. 24,(3)t+ 4
. Te | _ 1% b4 2(3)1
_yc_ _—3A17 —2A2(§)
o] [ 2403+ An(dy
and Ty | _ 1% bt 23)1-|-
| Yt ] _—31417 —2A23)+3
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SITIENEIEN SRS Simultaneous differential equations

Simultaneous Differential Equations

ex: ' +2y +2x 45y =77
Yy + x+4y =61

Lol -]

1. Guess the particular integrals: 7, and y, (Try constants)
zp 2 5] ' [77
= =
Up 14 61
g4 s [m] [
3l -1 o2 e | |15

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013 399 / 423
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SITIENEIEN SRS Simultaneous differential equations

tHiMEEIHEY

2. Solve the complementary functions: . and .
= Let z(t) = me™ and y(t) = ne™

= o] e 1] ]
SutRIHNEEH

r+2 2r+5 m_O
nl| |0

1 r+4
P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102

Fall, 2013
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SITIENEIEN SRS Simultaneous differential equations

r+2 2r+5
1 r+4

1 3 m
= r =-1,
I

-1 -1 m 0
Ty = —3, [ [ ]:[ ] = mo:ng=-—1:1
n 0

1 1
—3A167t — Agef?’t ]

=0=r?+4r+3=(r+1)(r+3)

0
0

] = mi:n;=-3:1

= K2 =
| Ajet 4 Age 3t

—3A1€_t — A26_3t +1
Ale_t + A2€_3t + 15

and
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S TIENETEN CIEECGE  Two variable phase diagrams
Two Variable Phase Diagrams

¥+2y +2x+5y=771 = 2’ =3y—45
y + x+4y =61 Yy = —x— 4y + 61

20

o (—5,12)

\ o (5,20)

N

Lo =0

0A2=0

EN
D

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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S TIENETEN CIEECGE  Two variable phase diagrams

ex: x —2r—y=-4
Yy —2x4+y=0

R EsI R

1. Guess the particular integrals:
~1
T
Yp -2 1 0
R R -4 |1
Al AL

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102

Fall, 2013

403 / 423



S TIENETEN CIEECGE  Two variable phase diagrams

L

2. Solve the complementary functions:

S(HEENIIEES
2= L]

-2 r+1
r—2 -1 9
= =0=r*—r—4
-2 r+1
P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102

Fall, 2013
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S TIENETEN CIEECGE  Two variable phase diagrams

[ V17 -3
T A e A A
2 9 \/1_72+3

= m1:n1:-2:(\/ﬁ—3)
o 1= VIT [ =A7=2 m | _|0
’ 2 o =VT43

=  mo:ng=-2:(V17+3)

N [ T 2A1€1+5/ﬁt — 2A261_5/ﬁt
- = VT —Vi7
L Ye ( 17—3)A161+2 17t—|— (\/ 17+3)A261 217t
and 2t ] 24, T — 94,0 T 1
| y(t) (VIT = 3) Are™ ¥t 4 (VT 4 3) Ape ¥t 42
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Simultaneous Equations

x —2r—y=—-4 = 2=2x+4+y—4
Yy —2x+y=0 Yy =2x—y

e (5,—10)

e (4,-10)

W

-10
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S TIENETEN CIEECGE  Two variable phase diagrams

ex: 7/ —r4+y=2
y—r—y=4

HiEERHEY

1. Guess the particular integrals:

AR ERIRHE

2. Solve the complementary functions:

SN ERINEY
-5 AL

P. C. Roger Cheng (Econ, NCU)
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S TIENETEN CIEECGE  Two variable phase diagrams

-1 1
= | =0=7r2-2r+2
-1 r-1
. t 1 m 0
= ry =141, = = mi:ng=1:—1
-1 1 n 0
1—; —1 1 m 0 N 1
To = — 1/’ == m ng = 7
? 1 —i || 0 2
T A0t 4 Ay e(1=0)t
- Ye N _Ali€(1+i)t + Agie(l_i)t
. Aj(cost +isint) + Ag(cost — isint)
=e
—Aqi(cost +isint) + Agi(cost — isint)
t

(A1 + Ag)cost + (A; — Ag)isint
—(A; — Ag)icost + (A1 + Ag)sint
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S TIENETEN CIEECGE  Two variable phase diagrams

z(t) | _
- [ y(t) ] N

o =1 —y+2, Yy =x+y+4

e'(Ascost + Agsint) — 3
e'(—Agcost + Assint) — 1

o (—2.9,—1) o (=3.1,—1)

50 2500
TT~—
\
/
30 -2500
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UV (D
Six Types of Equilibrium

@ Given the auxiliary equation ar? + br + ¢ = 0, one may determine the

type of equilibrium with information from

o the discriminant: D = b% — 4ac

e the sum of roots: | +7r9 = —b/a
e the product of roots: 71712 = c/a
D>0 D <0
real conjugate complex
r1+r2>0 72 >0 ry+ry >0
unstable node unstable focus
r+re <0 rire >0 ry+ry <0
stable node stable focus
7”1+7”2§0 rire <0 r1+ra=0
saddle point vortex
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SITIENEIEN IR Two variable phase diagrams

Linearization of a Nonlinear System

@ Given the autonomous system z’ = f(x,y) and v = g(x,y),

equilibrium point (Z,7) must satisfy f(Z,7) = g(7,7y) = 0.
@ The 1st-degree (linear) Taylor expansion around (T,7) gives

= f(x,y) = f(f7y) + fm(@?)(f _E) + fy(iy)(y _y)

y/ = g(‘ray) = g(fay) +gz(fay)(‘r 7f) +gy(fa?)(y 7?)
Or

= the reduced equations in matrix notation

MEEINHEY
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Miceheps ol
Local Stability Analysis

@ The auxiliary equation

T_fx _fy
Gz T — Gy

@ Denote

o [fm fy]
o 9 1@y

™ +Try = tr(JE)
rreo = det(JE)
D = tr(Jg)? —4-det(Jg)

then

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Simultaneous Equations

Local Stability Analysis

ex:
! xy — 2
! 20—y
ex:
= g2y
= 1—y
ex:
¥ = z—y+2
y = z+y+4

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102



Optimal Control Theory Basic Concepts

Optimal Control Theory

t=20 — t=Tort=0c0
initial time terminal time

@ The solution for any control variable:

a single value —  a complete time path

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102 Fall, 2013
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Optimal Control Theory Formula Derivation

@ Define u(t) as a control variable, y(t) as a state variable, and
F(t,y(t),u(t)) as an instantaneous utility function.

= Max /TF(t,y,u)dt
0
st. y=f(t,y,u) + other conditions
@ Terminal Condition:
y(T) exp[—7(T) - T] = 0

where 7(t) is the average discount rate that between dates 0 and
t.
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Optimal Control Theory Formula Derivation

L = /OF(t,yvu)dH/O IN(E) - (f(t,y,u) —9)]dt + p - y(T) exp[—F(T) - T)

T T
| 1w A0 € yw)de— [ AOdt+ ey expl-r(T) T
0 0
T T T
integration by parts / Ady = )\y’ — / yd\
0 0 Jo

T T
= [ HepuNdes [ Gydie x0p0) - XD)y()
0 0
+p-y(T) exp[—7(T) - T
r dx
[ [+ G 200 - xowi)
0
+ p - y(T) exp[—7(T) - T
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Optimal Control Theory Formula Derivation

@ Define (Hamiltonian function)

H(t,y,u,\) = F(t,y,u) + \t)f(t,y,u)

@ Let u(t) and y(t) be the optimal time paths for v and y.

@ Now, perturbing u(t) and y(t) by arbitrary perturbation function p;(¢)
and ps(t), and then get corresponding neighborhood paths:

t)y = u(t)+e-pi(t
y(t) + € pa(t

y(T) = y(T)+e pa(T)

u( )
( )

<
~

~—
I
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Optimal Control Theory Formula Derivation

‘?)_f - %{/OT [H(t,y,u,A) + %y} dt + (u exp[—7(T) - T] — A(T))y(T)}

= /T [8_H + @%} dt + (,u exp[—7(T) - T] — A(T)) oy(T)
0

OJe  dt Oe Oe
oH 0H oH
where E = %pl (t) + aiypg (t)
dy ()
De = P2 (t) and De = P2 (T)

_ /OT [%{fpl(tﬁ @1;1”),;2@)] dt

+ (exp[=7(T) - T) = A(T) )pa(T) = 0
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Optimal Control Theory Formula Derivation

T
Max / F(t,y,u)dt
0

st. y=f(t,y,u) + other conditions

= H(t,y,u,\) = F(t,y,u) + A(t) f(t,y,u)
(1) Pontryagin's maximum principle

9 —0 or  Hity.u',N) > H(t.y,u)
(2) state equation

Y= ?TH = f(t7y7u)
(3) costate equation

N— _0H

Iy

(4) transversality condition

AT) >0
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Optimal Control Theory

Example 1
Find the shortest distance.

)
A

A

\
~+
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Optimal Control Theory Examples

Example 2

Example 3

2
Max /(2y—3u)dt
0

st. g=y+u, y0)=4, y(2) free,

P. C. Roger Cheng (Econ, NCU) Mathematical Economics 102
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Optimal Control Theory Neoclassical Optimal Growth Model

Neoclassical Optimal Growth Model

Y = Y(K,L)isa CRTS production function,
Y, >0, Ye>0, Y <0, Ygg <0
K = I-0K,
I = S =Y-C
= k=y—c—(n+8k = ¢(k)—c—(n+0)k
U(c) denotes the social welfare function

Ulc) >0, U'(c) <0, lim.,oU'(c) =00, lim. s U'(c) =0

= V= / Ulc)e ™ Loe™ dt = / Ulc)e P~ dt
0 0
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Optimal Control Theory Neoclassical Optimal Growth Model

Max / e~ (Pt gy

st. k=¢k)—c—(n+0d)k
and  k(0) = ko, 0<c(t) <ok)

= H=U(c)e Pt 4 \ [qb(k:) —c—(n+ 5)/{;]

(1) YL =ur(e)et-mt—x =0
@) k=3 = p(k) —c— (n+ o)k

@ A= = 2[00 - (+9)
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