Mathematical Economics 102

P. C. Roger Cheng
Department of Economics
National Central University

Fall, 2013

Fundamentals

refer to textbook
Ch. 2 Economic Models
Ch. 3 Equilibrium Analysis in Economics
Others: p.82-84, p.230-231, p.318-320, p.327-330,
$P \Rightarrow Q(\equiv$ not $Q \Rightarrow$ not $P)$ can be read as

- if P then Q
- P implies Q
- P only if Q
- P is a sufficient condition for Q
- Q is a necessary condition for P
ex: P: George is Mary's father.
Q: George is a male.
ex: P: All students in this class are undergraduates.
Q: No one in this class is under 10 years old.
ex: Prove that $\sqrt{2}$ is an irrational number.
ex: If you believe in me with all your heart, you will be able to walk through that wall.
$P \Leftrightarrow Q$ (i.e. $P \Rightarrow Q$ and $Q \Rightarrow P$) can be read as
- P if and only if Q
- P is equivalent to Q
- P is a necessary and sufficient condition for Q
- P implies and is implied by Q
- A variable is something whose magnitude can change.
- A constant is a magnitude that does not change.
- A parameter is a constant that is variable.
ex: $Q_{X}^{D}=25-2 P_{X}+P_{Y}+0.2 M$ (a demand function) $U(X, Y)=X^{a} Y^{b}$ (an utility function)
- Endogenous variables are those whose solution values we seek from the model.
- Exogenous variables are determined by forces external to the model and whose magnitudes are accepted as given data only.

- A definitional equation sets up an identity between two alternate expressions that have exactly the same meaning. ex: $\pi \equiv R-C, \quad x^{n} \equiv x \times x \times \cdots \times x(n$ terms $)$
- A behavioral equation specifies the manner in which a variable behaves in response to changes in other variables.
ex: $C=Q^{2}+2 Q+35, \quad Y=K^{0.3} L^{0.7}$
- A conditional equation states a requirement to be satisfied.
ex: $Q_{d}=Q_{s}, \quad I=S$

Sets

- A set is a collection of distinct items thought of as a whole, and these items are called the elements of the set.
ex

budget set

Two ways of writing a set:

- Enumeration

$$
\text { ex: } \begin{aligned}
& A=\{1,2,3,4\}=\{2,4,3,1\} \\
& \Rightarrow 3 \in A, \quad 5 \notin A \\
& \mathbb{Z}_{+}=\{1,2,3,4, \ldots\}
\end{aligned}
$$

- Description
ex: $B=\left\{x \mid x \leq 4, x \in \mathbb{Z}_{+}\right\}=\left\{x \in \mathbb{Z}_{+}: x \leq 4\right\}$
- X is a subset of Y if and only if all the elements of set X are also elements of set Y, and we write

$$
X \subseteq Y
$$

where \subseteq is the set-inclusion relation.

- Z is not a subset of Y iff there exists at least one x such that $x \in Z$ but $x \notin Y$ and we write

$$
Z \nsubseteq Y
$$

Venn Diagram

Note that there are no elements in the area filled by slanted lines.

- The empty set (or the null set) is the set with no elements. The empty set is always written ϕ or $\}$.
- ϕ is a subset of any set.

proof:

If $\phi \nsubseteq A$, then there must be at least one element x such that $x \in \phi$ but $x \notin A$. However, there is no element in ϕ by definintion. Therefore, $\phi \subseteq A$.

- If there are m elements in set A, then there are 2^{m} subsets contained in set A.
ex: $A=\{1,2,3\}$
subsets of $A: \phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}$
- The power set of a set X is the set of all subsets of X, and is written $\mathcal{P}(X)$. That is, $\mathcal{P}(X)=\{A: A \subseteq X\}$.
ex: $A=\{1\}$
$\mathcal{P}(A)=\{\phi,\{1\}\}$
$\mathcal{P}(\mathcal{P}(A))=\{\phi,\{\phi\},\{\{1\}\},\{\phi,\{1\}\}\}$
- X is a proper subset of Y iff all the elements in set X are in set Y, but not all the elements of Y are in X, and we write

$$
X \subset Y \quad \text { iff } \quad X \subseteq Y \quad \text { but } \quad Y \nsubseteq X
$$

$X \quad Y$

- Two sets X and Y are equal iff they contain exactly the same elements, and we write

$$
X=Y \quad \text { iff } \quad X \subseteq Y \quad \text { and } \quad Y \subseteq X
$$

X

- The union of two sets A and B is the set of elements in one or other of the sets. We write

$$
A \cup B=\{x: x \in A \text { or } x \in B\}
$$

- The intersection of two sets X and Y is the set of elements that are in both X and Y. We write

$$
X \cap Y=\{x: x \in X \text { and } x \in Y\}
$$

- The complement of a set X is the set of elements of the universal set U that are not elements of X, and it is written \bar{X}. Thus

$$
\bar{X}=\{x \in U: x \notin X\}
$$

U

DeMorgan's Rule

(1) $\overline{A \cup B}=\bar{A} \cap \bar{B}$
(2) $\overline{A \cap B}=\bar{A} \cup \bar{B}$

Laws of Set Operations

- commutative law $A \cup B=B \cup A$

$$
A \cap B=B \cap A
$$

- associative law $A \cup(B \cup C)=(A \cup B) \cup C$

$$
\begin{aligned}
& A \cap(B \cap C)=(A \cap B) \cap C \\
& A \cup(B \cap C) \neq(A \cup B) \cap C
\end{aligned}
$$

- distributive law $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

- The relative difference of X and Y, denoted $X-Y$, is the set of elements of X that are not also in Y

$$
X-Y=\{x \in U: x \in X \text { and } x \notin Y\}
$$

- A partition of the universal set U is a collection of disjoint subsets of U, the union of which is U. Thus, if we have n subsets $X_{i}, i=1, \cdots, n$, such that

$$
X_{i} \cap X_{j}=\phi, \quad i, j=1, \cdots, n, \quad i \neq j
$$

and

$$
X_{1} \cup X_{2} \cup X_{3} \cup \cdots \cup X_{n}=U
$$

then these n subsets form a partition of U.

ex: Show that for any $X \subseteq U,\{X, \bar{X}\}$ is a partition of U.
ex: Consider the collection of subsets of \mathbb{Z}_{+}defined as follows:

$$
X_{i}=\left\{x \in \mathbb{Z}_{+}: 10(i-1)<x \leq 10 i, i \in \mathbb{Z}_{+}\right\}
$$

Does the collection of these X_{i} form a partition of \mathbb{Z}_{+}?

Solution

$$
\begin{aligned}
& X_{1}=\left\{x \in \mathbb{Z}_{+}: 0<x \leq 10\right\} \\
& X_{2}=\left\{x \in \mathbb{Z}_{+}: 10<x \leq 20\right\} \\
& X_{3}=\left\{x \in \mathbb{Z}_{+}: 20<x \leq 30\right\}
\end{aligned}
$$

Complex Numbers (C)

Real Numbers (\mathbb{R}) Imaginary Numbers

Rational Numbers Irrational Numbers

Integers $(\mathbb{Z}) \quad$ Nonintegers

Positive Integers $\left(\mathbb{Z}_{+}\right) \quad$ Zero \quad Negative Integers

- The set $\mathbb{R}_{++} \subset \mathbb{R}$ consists of the strictly positive real numbers with the characteristics that
(i) \mathbb{R}_{++}is closed under addition and multiplication.
(ii) For any $a \in \mathbb{R}$, exactly one of the following is true:
$a \in \mathbb{R}_{++} \quad$ or $\quad a=0 \quad$ or $\quad-a \in \mathbb{R}_{++}$
- The set $\mathbb{R}_{+}=\mathbb{R}_{++} \cup\{0\}$ is the set of nonnegative real numbers.

Bounded and Closed Sets

- A set $S \subset \mathbb{R}$ is bounded above if there exists $b \in \mathbb{R}$ such that for all $x \in S, x \leq b ; b$ is then called an upper bound of S.
- A set $S \subset \mathbb{R}$ is bounded below if there exists $a \in \mathbb{R}$ such that for all $x \in S, x \geq a ; a$ is then called a lower bound of S.

- The supremum of a set S, written sup S, has the properties:
(i) $x \leq \sup S$ for all $x \in S$.
(ii) If b is an upper bound of S, then $\sup S \leq b$.
- The infimum of a set S, written inf S, has the properties:
(i) $x \geq \inf S$ for all $x \in S$.
(ii) If a is a lower bound of S, then $a \leq \inf S$.

Conclusions

- If the sup or the inf of a subset of \mathbb{R} exists, then it is unique.
- Every nonempty subset of \mathbb{R} that has an upper bound has a supremum (least upper bound) in \mathbb{R}.
- Every nonempty subset of \mathbb{R} that has a lower bound has an infimum (greatest lower bound) in \mathbb{R}.
- If $\sup X \in X$, then $\sup X$ is called the maximum of X. In the same way, if $\inf X \in X$, then $\inf X$ is called the minimum of X.

An interval is bounded if it is impossible to go off to infinity while remaining inside it.

- unbounded above

$$
\begin{aligned}
& {[a, \infty)=\{x \in \mathbb{R}: x \geq a\}} \\
& (a, \infty)=\{x \in \mathbb{R}: x>a\}
\end{aligned}
$$

- unbounded below

$$
\begin{aligned}
& (-\infty, b]=\{x \in \mathbb{R}: x \leq b\} \\
& (-\infty, b)=\{x \in \mathbb{R}: x<b\}
\end{aligned}
$$

- A boundary point of an interval, such as $[a, b]$, is a point x_{0} that every interval $\left(x_{0}-\epsilon, x_{0}+\epsilon\right)$ around it, however small, must contain points that are in $[a, b]$ and points that are not.
- For an interior point of $[a, b]$, it is always possible to find an interval $I_{\epsilon}\left(x_{0}\right)$ that lies entirely in $[a, b]$.

A closed interval contains all (if any) its boundary points.

- closed interval : $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$
- half-open interval : $[a, b)=\{x \in \mathbb{R}: a \leq x<b\}$

$$
(a, b]=\{x \in \mathbb{R}: a<x \leq b\}
$$

- open interval : $(a, b)=\{x \in \mathbb{R}: a<x<b\}$

A compact interval is defined as an interval that is both closed and bounded.
ex: $[2,5]$ closed and bounded
ex: $[2,5) \quad$ half-open and bounded
ex: $[2, \infty) \quad$ closed and unbounded above
ex: $(-\infty, 5)$ open and unbounded below

Euclidean Space

- ordered pairs (a, b)

Note: $\quad(a, b) \neq(b, a)$ unless $a=b$

- ordered triples (a, b, c)
- ordered quadruple (a, b, c, d)
- ordered quintuple (a, b, c, d, e)

The cartesian product of two sets X and Y, written $X \otimes Y$, is the set of ordered pairs formed by taking in turn each element in X and associating with it each element in Y

$$
X \otimes Y \equiv\{(a, b): a \in X \quad \text { and } \quad b \in Y\}
$$

ex: $X=\{1,2,3\}, \quad Y=\{a, b\}$

$$
X \otimes Y=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}
$$

$\mathbf{e x}: \mathbb{R} \otimes \mathbb{R}=\mathbb{R}^{2}=\{(x, y): x \in \mathbb{R}, y \in \mathbb{R}\}$
$\mathbf{e x}: \mathbb{R} \otimes \mathbb{R} \otimes \mathbb{R}=\mathbb{R}^{3}=\{(x, y, z): x \in \mathbb{R}, y \in \mathbb{R}, z \in \mathbb{R}\}$

Given points $a=\left(a_{1}, \ldots, a_{N}\right)$ and $b=\left(b_{1}, \ldots, b_{N}\right)$ in \mathbb{R}^{N}, $N \geq 1$, the Euclidean distance between them is

$$
d(a, b)=\sqrt{\sum_{i=1}^{N}\left(a_{i}-b_{i}\right)^{2}}
$$

ex: $a=a_{1}, b=b_{1}$,

$$
d(a, b)=\sqrt{\left(a_{1}-b_{1}\right)^{2}}=\left|a_{1}-b_{1}\right|
$$

ex: $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right)$,

$$
d(a, b)=\sqrt{\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}}
$$

- An ϵ-neighborhood of a point $\mathbf{x}_{0} \in \mathbb{R}^{N}$ is given by the set $N_{\epsilon}\left(\mathbf{x}_{0}\right)=\left\{\mathbf{x} \in \mathbb{R}^{N}: d\left(\mathbf{x}_{0}, \mathbf{x}\right)<\epsilon, \epsilon \in \mathbb{R}_{++}\right\}$. Simply, $N_{\epsilon}\left(\mathbf{x}_{0}\right)$ is the set of points lying within a distance ϵ of \mathbf{x}_{0}.
- A boundary point of a set $X \subset \mathbb{R}^{N}$ is a point \mathbf{x}_{0} such that every ϵ-neighborhood $N_{\epsilon}\left(\mathbf{x}_{0}\right)$ contains points that are in and points that are not in X.
- An interior point of a set $X \subset \mathbb{R}^{N}$ is a point $\mathbf{x}_{0} \in X$ for which there exists an ϵ such that $N_{\epsilon}\left(\mathbf{x}_{0}\right) \subset X$.

- A set $X \subset \mathbb{R}^{N}$ is open if, for every $\mathbf{x} \in X$, there exists an ϵ such that $N_{\epsilon}(\mathbf{x}) \subset X$. That is, an open set is composed of its interior points only.
- A set $X \subset \mathbb{R}^{N}$ is closed if all the boundary points of X are also in the set X.

Note: Points in the broken part on the circumference of X (the yellow disk) do not belong to X, while points in the solid part do.

- The interior of a set $X \subset \mathbb{R}^{N}$ is the open set Int $X=\left\{\mathbf{x} \in \mathbb{R}^{N}: \mathbf{x}\right.$ is an interior point of $\left.X\right\}$ (the disk without its circumference)
- The closure of X is the closed set
$\mathrm{Cl} X=\mathbb{R}^{N} \backslash \operatorname{lnt}\left(\mathbb{R}^{N} \backslash X\right)$
(the disk with its entire circumference)
- The boundary of X is the closed set

Bdry $X=\mathrm{Cl} X \backslash \operatorname{lnt} X$
$=\left\{\mathbf{x}^{\prime} \in \mathbb{R}^{N}: \mathbf{x}^{\prime}\right.$ is a boundary point of $\left.X\right\}$
(the entire circumference only)

- A set $X \subset \mathbb{R}^{N}$ is open iff its complement $\bar{X} \subset \mathbb{R}^{N}$ is a closed set.
Proof
(i) Suppose that \bar{X} is not a closed set, then at least one of its boundary points, say \mathbf{x}, is not in \bar{X}. That is, $\mathbf{x} \notin \bar{X}$ and thus $\mathbf{x} \in X$.
(ii) Because \mathbf{x} is a boundary point of \bar{X}, every ϵ-neighborhood $N_{\epsilon}(\mathbf{x})$ contains points that are in and points that are not in \bar{X}. Hence, \mathbf{x} is also a boundary point of X.

From (i) and (ii), X is not an open set.

- $\mathbb{R}^{N} \subseteq \mathbb{R}^{N}$ is both closed and open.

Proof

(i) For any point $\mathbf{x} \in \mathbb{R}^{N}$, we can find an $\epsilon>0$ such that $N_{\epsilon}(\mathbf{x}) \subset \mathbb{R}^{N}$. Hence, all points in \mathbb{R}^{N} are its interior points and then \mathbb{R}^{N} is an open set.
(ii) Since all points in \mathbb{R}^{N} are interior points, all (if any) its boundary points will be in its complement ϕ. However, $\phi \subset \mathbb{R}^{N}$ and then all its boundary points are also in \mathbb{R}^{N}. Thus, \mathbb{R}^{N} is a closed set.

- ϕ is both closed and open.
- The intersection of two open sets is open.

Proof

Assume that $X, Y \subset \mathbb{R}^{N}$ are open and $Z=X \cap Y$.
(i) If $Z=\phi$, then it is an open set.
(ii) If $Z \neq \phi$, then for any $\mathbf{z}_{0} \in Z$, we will have $\mathbf{z}_{0} \in X$ and $\mathbf{z}_{0} \in Y$. Since X and Y are open, there must exist $\epsilon_{x}>0$ and $\epsilon_{y}>0$ such that $N_{\epsilon_{x}}\left(\mathbf{z}_{0}\right) \subset X$ and $N_{\epsilon_{y}}\left(\mathbf{z}_{0}\right) \subset Y$. Let $\epsilon=\min \left\{\epsilon_{x}, \epsilon_{y}\right\}$, $N_{\epsilon}\left(\mathbf{z}_{0}\right) \subset X$ and $N_{\epsilon}\left(\mathbf{z}_{0}\right) \subset Y$ and thus $N_{\epsilon}\left(\mathbf{z}_{0}\right) \subset Z$ will hold.

From (i) and (ii), Z is an open set.

- The union of two closed sets is closed.

Proof:

Assume that $X, Y \subset \mathbb{R}^{N}$ are closed and $Z=X \cup Y$.
(i) \bar{X}, \bar{Y} are open.
(ii) $\bar{Z}=\bar{X} \cap \bar{Y}$ is open.
(iii) Z is closed.

- The union of two open sets is open.
- The intersection of two closed sets is closed.
- A set $X \subset \mathbb{R}^{N}$ is bounded if, for every $\mathbf{x}_{0} \in X$, there exists a finite $\epsilon<\infty$ such that $X \subset N_{\epsilon}\left(\mathbf{x}_{0}\right)$.
- The intersection of two bounded sets is bounded.

Proof

Assume that $X, Y \subset \mathbb{R}^{N}$ are bounded and $Z=X \cap Y$. For any $\mathbf{z}_{0} \in Z$, we will have $\mathbf{z}_{0} \in X$. Since X is bounded, there must exists $0<\epsilon<\infty$ such that $Z \subseteq X \subset N_{\epsilon}\left(\mathbf{z}_{0}\right)$. Hence Z is bounded.

- The union of two bounded sets is bounded.
- Consider a parameterized maximization problem of the form

$$
M(a)=\max f(\mathbf{x}, a) \quad \text { such that } \quad \mathbf{x} \in G(a)
$$

- Existence of an optimum If the constraint set $G(a)$ is nonempty and compact, and the function f is continuous, then there exists a solution \mathbf{x}^{*} to this maximization problem.
- Uniqueness of optimum

If the function f is strictly concave and the constraint set is convex, then a solution, should it exist, is unique.

Convex Sets

Convex Sets

Convex Sets

Convex Sets

Convex Sets

any point on $\overline{B C}=B+\lambda B C$

$$
=B+\lambda(C-B)=(1-\lambda) B+\lambda C
$$

Convex Combination

- Given two points

$$
\mathbf{x}^{\prime}=\left(x_{1}^{\prime}, x_{2}^{\prime}, \cdots, x_{N}^{\prime}\right)^{T} \in \mathbb{R}^{N}
$$

and

$$
\mathbf{x}^{\prime \prime}=\left(x_{1}^{\prime \prime}, x_{2}^{\prime \prime}, \cdots, x_{N}^{\prime \prime}\right)^{T} \in \mathbb{R}^{N}
$$

their convex combination is the set of points $\overline{\mathbf{x}} \in \mathbb{R}^{N}$ for some $\lambda \in[0,1]$, given by

$$
\begin{aligned}
\overline{\mathbf{x}} & =\lambda \mathbf{x}^{\prime}+(1-\lambda) \mathbf{x}^{\prime \prime} \\
& =\left[\lambda x_{1}^{\prime}+(1-\lambda) x_{1}^{\prime \prime}, \cdots, \lambda x_{N}^{\prime}+(1-\lambda) x_{N}^{\prime \prime}\right]^{T}
\end{aligned}
$$

- A set $X \subset \mathbb{R}^{N}$ is convex if for every pair of points $\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime} \in X$, and any $\lambda \in[0,1]$, the point

$$
\overline{\mathrm{x}}=\lambda \mathrm{x}^{\prime}+(1-\lambda) \mathrm{x}^{\prime \prime}
$$

also belongs to the set X.

- A set $X \subset \mathbb{R}^{N}$ is strictly convex, if for every pair of points $\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime} \in X, \mathrm{x}^{\prime} \neq \mathrm{x}^{\prime \prime}$, and every $\lambda \in(0,1)$, we have that $\overline{\mathrm{x}}$ is an interior point of X, where

$$
\overline{\mathbf{x}}=\lambda \mathbf{x}^{\prime}+(1-\lambda) \mathbf{x}^{\prime \prime}
$$

- The intersection of two convex sets is also convex.
- The sum of two convex sets is also convex.
ex: production possibility set budget set

Functions

- Given two sets X and Y, a function (or a mapping / transformation) from X to Y is a rule that associates with each element of X, one and only one element of Y.

$$
f: X \rightarrow Y \quad \text { or } \quad y=f(x), \quad x \in X
$$

where x is referred to as the independent variable and y as the dependent variable.

- The set X is called the domain of the function, Y is called the codomain, and the set of elements in Y associated with the elements of X by the function is called the range of the function.
- The range of a function can be written as the image set.

$$
f(X)=\{y \in Y: y=f(x), x \in X\}
$$

- If $f(X) \subset Y$, then we say f maps X into Y, while if $f(X)=Y$, then we say that f maps X onto Y.
- If we focus on cases in which $Y=\mathbb{R}$ and $X \subseteq \mathbb{R}^{N}, N \geq 1$, then $f: X \rightarrow Y$ will be referred to as a real-valued function.
ex: $y=f(x)=2+3 x, \quad x \in \mathbb{R}$

$$
\begin{aligned}
& y=h\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}^{3}, \quad\left(x_{1}, x_{2}\right) \in \mathbb{R}_{+}^{2} \\
& y=g(x, z, w)=\sin x+2 z-3 w^{2}, \quad(x, z, w) \in \mathbb{R}^{3}
\end{aligned}
$$

- The inverse function of $y=f(x)$ is to invert this mapping and write x as a function of y, written as

$$
x=f^{-1}(y)
$$

- This can only be done if f is one-to-one (into or onto).

- The composite mapping of two mappings $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ is defined as

$$
g \circ f: X \rightarrow Z \quad \text { or } \quad z=g[f(x)]
$$

where $f(X) \subseteq Y$.

Types of Functions

- Polynomial
$y=f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} x^{0}$
ex: $y=3$ (constant) ex: $y=2 x+1$ (linear)
ex: $y=x^{2}+2 x+5$ (quadratic) ex: $y=x^{3}+1$ (cubic)
- Rational $=$ a ratio of two polynomials in x
$\mathrm{ex}: y=\frac{x-1}{x^{2}+2 x+4}$
- Algebraic $=$ functions expressed in terms of polynomials and/or roots of polynomials
ex: $y=\sqrt{x^{2}+3}$
- Nonalgebraic(Transcedential)
ex: $y=3^{x}$ (exponential)
ex: $y=\log _{2} x$ (logarithmic)
ex: $y=\sin x$ (trigonometric)

Concave and Quasiconcave functions

- Let $X \subset \mathbb{R}^{N}$ be a convex set and $f: X \rightarrow \mathbb{R}$. If for any two points $\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime} \in X$ and $\lambda \in[0,1]$,

$$
f(\overline{\mathbf{x}}) \geq \lambda f\left(\mathbf{x}^{\prime}\right)+(1-\lambda) f\left(\mathbf{x}^{\prime \prime}\right)=\bar{f}
$$

where $\overline{\mathbf{x}}=\lambda \mathbf{x}^{\prime}+(1-\lambda) \mathbf{x}^{\prime \prime}$, then f is said to be a concave function. That is, the line segment connecting points A and B lies on or below the surface.

- The function f is strictly concave if the strict inequality holds when $\mathbf{x}^{\prime} \neq \mathbf{x}^{\prime \prime}$ and $\lambda \in(0,1)$, i.e., $\overline{A B}$ lies entirely below the surface except for A and B.

- The function f is convex if

$$
f(\overline{\mathbf{x}}) \leq \lambda f\left(\mathbf{x}^{\prime}\right)+(1-\lambda) f\left(\mathbf{x}^{\prime \prime}\right)=\bar{f}
$$

where $\overline{\mathbf{x}}=\lambda \mathbf{x}^{\prime}+(1-\lambda) \mathbf{x}^{\prime \prime}$ and $\lambda \in[0,1]$. That is, the line segment connecting points A and B lies on or above the surface.

- The function f is strictly convex if the strict inequality holds when $\mathbf{x}^{\prime} \neq \mathbf{x}^{\prime \prime}$ and $\lambda \in(0,1)$, i.e., $\overline{A B}$ lies entirely above the surface except for A and B.

- $X \subset \mathbb{R}^{N}$, suppose that $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ are two concave functions. Show that $f+g$ is concave.

Proof

Let $\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime} \in X, \overline{\mathbf{x}}=\lambda \mathbf{x}^{\prime}+(1-\lambda) \mathbf{x}^{\prime \prime}$ and $\lambda \in[0,1]$. Because
$h(\overline{\mathbf{x}})=f(\overline{\mathbf{x}})+g(\overline{\mathbf{x}})$

$$
\begin{aligned}
& \geq\left[\lambda f\left(\mathbf{x}^{\prime}\right)+(1-\lambda) f\left(\mathbf{x}^{\prime \prime}\right)\right]+\left[\lambda g\left(\mathbf{x}^{\prime}\right)+(1-\lambda) g\left(\mathbf{x}^{\prime \prime}\right)\right] \\
& =\lambda\left[f\left(\mathbf{x}^{\prime}\right)+g\left(\mathbf{x}^{\prime}\right)\right]+(1-\lambda)\left[f\left(\mathbf{x}^{\prime \prime}\right)+g\left(\mathbf{x}^{\prime \prime}\right)\right] \\
& =\lambda h\left(\mathbf{x}^{\prime}\right)+(1-\lambda) h\left(\mathbf{x}^{\prime \prime}\right)
\end{aligned}
$$

then the sum of two concave functions is also concave.

- $X \subset \mathbb{R}^{N}$, if $f: X \rightarrow \mathbb{R}$ and $g: X \rightarrow \mathbb{R}$ are two concave functions and at least one of them is strictly concave, then $f+g$ is strictly concave.
- The sum of two convex functions is also convex. And if at least one of them is strictly convex, their sum will be strictly convex.
- The negative of a (strictly) concave function is (strictly) convex.
- A level set of the function $y=f(\mathbf{x})$ is the set

$$
L=\left\{\mathbf{x} \in \mathbb{R}^{N}: f(\mathbf{x})=c\right\}
$$

for some given number $c \in \mathbb{R}$

- The better set of the point \mathbf{x}_{0} is

$$
B\left(\mathbf{x}_{0}\right)=\left\{\mathbf{x}: f(\mathbf{x}) \geq f\left(\mathbf{x}_{0}\right)\right\}
$$

- $L(c)=\left\{x_{1}, x_{2}, x_{3}\right\}$
- $B\left(x_{1}\right)=B\left(x_{2}\right)=B\left(x_{3}\right)$
$=\left\{x \in \mathbb{R}: x \in\left[x_{1}, x_{2}\right] \cup\left[x_{3}, \infty\right)\right\}$

- $X \subset \mathbb{R}^{N}$, suppose that $f: X \rightarrow \mathbb{R}$ is a concave function. Show that, for every point $\mathbf{x}_{0} \in X$, the better set $B\left(\mathbf{x}_{0}\right)$ is convex.

Proof

Let $\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime} \in B\left(\mathbf{x}_{0}\right)$, then $f\left(\mathbf{x}^{\prime}\right) \geq f\left(\mathbf{x}_{0}\right)$ and $f\left(\mathbf{x}^{\prime \prime}\right) \geq f\left(\mathbf{x}_{0}\right)$.
Since f is a concave function, for any $\lambda \in[0,1]$,

$$
\begin{aligned}
f(\overline{\mathbf{x}}) & \geq \lambda f\left(\mathbf{x}^{\prime}\right)+(1-\lambda) f\left(\mathbf{x}^{\prime \prime}\right) \\
& \geq \lambda f\left(\mathbf{x}_{0}\right)+(1-\lambda) f\left(\mathbf{x}_{0}\right)=f\left(\mathbf{x}_{0}\right)
\end{aligned}
$$

Thus, $\overline{\mathbf{x}} \in B\left(\mathbf{x}_{0}\right)$. That is, $B\left(\mathbf{x}_{0}\right)$ is a convex set.

- The better set is also called the upper contour set.
- The worse set (or the lower contour set) of the point \mathbf{x}_{0} is

$$
W\left(\mathbf{x}_{0}\right)=\left\{\mathbf{x}: f(\mathbf{x}) \leq f\left(\mathbf{x}_{0}\right)\right\}
$$

- If $X \subset \mathbb{R}^{N}$, and $f: X \rightarrow \mathbb{R}$ is a convex function, then, for every point $\mathbf{x}_{0} \in X$, the worse set $W\left(\mathbf{x}_{0}\right)$ is convex.
- f is (strictly) quasiconcave if and only if

$$
f(\overline{\mathbf{x}}) \geq(>) \operatorname{Min}\left\{f\left(\mathbf{x}^{\prime}\right), f\left(\mathbf{x}^{\prime \prime}\right)\right\}
$$

for all $\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime} \in X$ and $\lambda \in[0,1] . \quad\left(\mathrm{x}^{\prime} \neq \mathrm{x}^{\prime \prime}, \quad \lambda \in(0,1)\right)$

- f is (strictly) quasiconvex if and only if

$$
f(\overline{\mathbf{x}}) \leq(<) \operatorname{Max}\left\{f\left(\mathbf{x}^{\prime}\right), f\left(\mathbf{x}^{\prime \prime}\right)\right\}
$$

for all $\mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime} \in X$ and $\lambda \in[0,1] . \quad\left(\mathrm{x}^{\prime} \neq \mathrm{x}^{\prime \prime}, \quad \lambda \in(0,1)\right)$

- Let $X \subset \mathbb{R}^{N}$ be a convex set, $f: X \rightarrow \mathbb{R}$. Show that f is a quasiconcave function iff, for every point $\mathbf{x}_{0} \in X$, the better set $B\left(\mathbf{x}_{0}\right)$ is convex.

That is,

$$
\mathbf{x}^{\prime} \in B\left(\mathbf{x}_{0}\right) \text { and } \mathbf{x}^{\prime \prime} \in B\left(\mathbf{x}_{0}\right) \Rightarrow \overline{\mathbf{x}} \in B\left(\mathbf{x}_{0}\right)
$$

or

$$
f\left(\mathbf{x}^{\prime}\right) \geq f\left(\mathbf{x}_{0}\right) \text { and } f\left(\mathbf{x}^{\prime \prime}\right) \geq f\left(\mathbf{x}_{0}\right) \Rightarrow f(\overline{\mathbf{x}}) \geq f\left(\mathbf{x}_{0}\right)
$$

for any $\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime} \in X$ and $\lambda \in[0,1]$.

Proof

(i) If f is quasiconcave, then $B\left(\mathbf{x}_{0}\right)$ is convex.

Given $\mathbf{x}^{\prime}, \mathbf{x}^{\prime \prime} \in B\left(\mathbf{x}_{0}\right)$ so that $f\left(\mathbf{x}^{\prime}\right) \geq f\left(\mathbf{x}_{0}\right)$ and $f\left(\mathbf{x}^{\prime \prime}\right) \geq f\left(\mathbf{x}_{0}\right)$, since f is quasiconcave, for any $\lambda \in[0,1]$,

$$
\begin{aligned}
& \qquad f(\overline{\mathbf{x}}) \geq \operatorname{Min}\left\{f\left(\mathbf{x}^{\prime}\right), f\left(\mathbf{x}^{\prime \prime}\right)\right\} \geq f\left(\mathbf{x}_{0}\right) \\
& \Rightarrow \overline{\mathbf{x}} \in B\left(\mathbf{x}_{0}\right) . \text { That is, } B\left(\mathbf{x}_{0}\right) \text { is convex. }
\end{aligned}
$$

(ii) If $B\left(\mathrm{x}_{0}\right)$ is convex, then f is quasiconcave.

Assume that $f\left(\mathbf{x}^{\prime}\right) \geq f\left(\mathbf{x}^{\prime \prime}\right)$ so that $\mathbf{x}^{\prime}, \mathrm{x}^{\prime \prime} \in B\left(\mathrm{x}^{\prime \prime}\right)$.
Since $B\left(\mathrm{x}^{\prime \prime}\right)$ is a convex set, $\overline{\mathrm{x}} \in B\left(\mathrm{x}^{\prime \prime}\right)$
$\Rightarrow f(\overline{\mathbf{x}}) \geq f\left(\mathbf{x}^{\prime \prime}\right)=\operatorname{Min}\left\{f\left(\mathbf{x}^{\prime}\right), f\left(\mathbf{x}^{\prime \prime}\right)\right\}$
$\Rightarrow f$ is quasiconcave.

- $X \subset \mathbb{R}^{N}, f: X \rightarrow \mathbb{R}$, then the hypograph of f is a set defined as

$$
H G_{f}=\{(\mathbf{x}, y): \mathbf{x} \in X, y \in \mathbb{R}, y \leq f(\mathbf{x})\}
$$

and the epigraph as

$$
E G_{f}=\{(\mathbf{x}, y): \mathbf{x} \in X, y \in \mathbb{R}, y \geq f(\mathbf{x})\} .
$$

- If and only if f is a concave function, its hypograph is convex.

Proof:

(i) By definition, $\left(\mathbf{x}^{\prime}, f\left(\mathbf{x}^{\prime}\right)\right) \in H G_{f}$ and $\left(\mathbf{x}^{\prime \prime}, f\left(\mathbf{x}^{\prime \prime}\right)\right) \in H G_{f}$. Therefore, for $\lambda \in[0,1],(\overline{\mathbf{x}}, \bar{f}) \in H G_{f}$ since $H G_{f}$ is convex.
$\Rightarrow \bar{f} \leq f(\overline{\mathbf{x}})$ by definition of $H G_{f}$. Thus, f is a concave function.
(ii) Assume that $\left(\mathbf{x}^{\prime}, y^{\prime}\right)$ and $\left(\mathbf{x}^{\prime \prime}, y^{\prime \prime}\right) \in H G_{f}$, thus $y^{\prime} \leq f\left(\mathbf{x}^{\prime}\right)$ and $y^{\prime \prime} \leq f\left(\mathbf{x}^{\prime \prime}\right) . \quad \Rightarrow \quad \bar{y} \leq \bar{f} \leq f(\overline{\mathbf{x}})$
concave function
$\Rightarrow \quad(\overline{\mathbf{x}}, \bar{y}) \in H G_{f}$
$\Rightarrow H G_{f}$ is a convex set.

Linear Algebra

refer to textbook
Ch. 4 Linear Models and Matrix Algebra
Ch. 5 Linear Models and Matrix Algebra (continued)

- A matrix is a rectangular array of numbers enclosed in parentheses. It is conventionally denoted by a capital letter.

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
5 & 3 & 10 & 12 \\
6 & 5 & 9 & 15 \\
7 & 5 & 8 & 14 \\
17 & 13 & 22 & 31 \\
32 & 17 & 35 & 44
\end{array}\right] \\
2 \times 2
\end{gathered}
$$

- The number of rows and the number of columns determine the dimension (the order) of the matrix.
- A matrix A of order $m \times n$ can be explicitly written as

$$
\begin{aligned}
A & =\left[a_{i j}\right], \quad i=1 \sim m, j=1 \sim n \\
& =\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]_{m \times n}
\end{aligned}
$$

- An array that consists of only one row or one column is known as a vector.
ex: $\left[\begin{array}{cccc}5 & 3 & 5 & 4\end{array}\right]_{1 \times 4} \quad$ row matrix (row vector)
ex: $\left[\begin{array}{c}-1 \\ 2\end{array}\right]_{2 \times 1} \quad$ column matrix (column vector)
- Two matrices (say $\left.A=\left[a_{i j}\right], B=\left[b_{i j}\right]\right)$ are equal $(A=B)$ iff (i) they have the same dimension and
(ii) all the corresponding elements are equal $\left(a_{i j}=b_{i j}, \forall i, j\right)$.
ex: $\left[\begin{array}{cc}3 & 2 \\ x+y & 1\end{array}\right]_{2 \times 2}=\left[\begin{array}{ll}3 & y \\ 2 & 1\end{array}\right]_{2 \times 2}$
$\Rightarrow y=2, x=0$.
ex: $\left[\begin{array}{ccc}3 & 4 & x \\ 2 & 5 & 7\end{array}\right]_{2 \times 3}=\left[\begin{array}{ccc}3 & w & 1 \\ z & 5 & y\end{array}\right]_{2 \times 3}$
$\Rightarrow x=1, y=7, z=2, w=4$.
- A matrix that has the same number of rows and columns is called a square matrix.

$$
\begin{aligned}
\mathrm{ex}: A & =\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right]_{2 \times 2} \mathbf{O} B=\left[\begin{array}{lll}
3 & 4 & 1 \\
2 & 5 & 7
\end{array}\right]_{2 \times 3} \mathbf{X} \\
C & =\left[\begin{array}{lll}
c_{11} & c_{12} & c_{13} \\
c_{21} & c_{22} & c_{23} \\
c_{31} & c_{32} & c_{33}
\end{array}\right]_{3 \times 3}
\end{aligned}
$$

- Any square matrix that has only nonzero entries on the main diagonal and zeros everywhere else is known as a diagonal matrix.

$$
\begin{aligned}
& \text { ex: } P=\left[\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right], \quad Q=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { (identity matrix) }
\end{aligned}
$$

- A matrix with all its entries being zero is known as the null matrix. ex:

$$
\begin{aligned}
& \mathbf{0}_{2 \times 3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \mathbf{0}_{3 \times 3}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

- The transpose matrix, A^{T} (or A^{\prime}), is the original matrix A with its rows and columns interchanged.
ex:

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 7
\end{array}\right]_{2 \times 3} \\
A^{T}=[\\
\left(A^{T}\right)^{T}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 5 & 7
\end{array}\right]=A
\end{gathered}
$$

$$
A^{T}=\left[\begin{array}{ll}
1 & 2 \\
2 & 5 \\
3 & 7
\end{array}\right]_{3 \times 2}
$$

- A matrix A that is equal to its transpose A^{T} is called a symmetric matrix.

$$
\begin{aligned}
& \text { ex: } A=\left[\begin{array}{ll}
5 & 1 \\
9 & 3
\end{array}\right]_{2 \times 2} \quad \boldsymbol{X} \quad A^{T}=\left[\begin{array}{ll}
5 & 9 \\
1 & 3
\end{array}\right]_{2 \times 2} \\
& \text { ex: } B=\left[\begin{array}{lll}
1 & 2 & 4 \\
3 & 8 & 0
\end{array}\right]_{2 \times 3} \\
& \text { Х } B^{T}=\left[\begin{array}{ll}
1 & 3 \\
2 & 8 \\
4 & 0
\end{array}\right]_{3 \times 2} \\
& \text { ex: } C=\left[\begin{array}{lll}
1 & 3 & 5 \\
3 & 2 & 8 \\
5 & 8 & 4
\end{array}\right]_{3 \times 3} \\
& C^{T}=\left[\begin{array}{lll}
1 & 3 & 5 \\
3 & 2 & 8 \\
5 & 8 & 4
\end{array}\right]_{3 \times 3}
\end{aligned}
$$

- The sum of two matrices is a matrix, the elements of which are the sums of the corresponding elements of the matrices.

$$
\begin{gathered}
{\left[a_{i j}\right]+\left[b_{i j}\right]=\left[c_{i j}\right], \text { where } c_{i j}=a_{i j}+b_{i j}, \forall i, j} \\
\text { ex: } \\
{\left[\begin{array}{ll}
4 & 9 \\
2 & 1
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 7
\end{array}\right]=\left[\begin{array}{cc}
6 & 9 \\
2 & 8
\end{array}\right]} \\
\text { ex: }\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 1 & 2
\end{array}\right]+\left[\begin{array}{ccc}
0 & 3 & 5 \\
1 & 2 & -1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 5 & 6 \\
4 & 3 & 1
\end{array}\right]
\end{gathered}
$$

- Two matrices are conformable for addition if they have the same dimension. On the other hand, two matrices are not conformable for addition if their dimensions are different.
ex: $\left[\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right]+\left[\begin{array}{cc}2 & -5 \\ 4 & 0\end{array}\right]$
0

$$
\left[\begin{array}{lll}
3 & 4 & 1 \\
6 & 5 & 3
\end{array}\right]+\left[\begin{array}{cc}
0 & 2 \\
-5 & 8
\end{array}\right]
$$

- The sum of a matrix A and a (conformable) null matrix is A itself.

$$
\begin{aligned}
& \text { ex: }\left[\begin{array}{ll}
4 & 9 \\
2 & 1
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
4 & 9 \\
2 & 1
\end{array}\right] \\
& \text { ex: }\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 1 & 2
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 1 & 2
\end{array}\right]
\end{aligned}
$$

- The transpose of a sum of matrices is the sum of the transposes:

$$
\begin{array}{r}
(A+B)^{T}=A^{T}+B^{T} \\
\text { ex: }\left[\begin{array}{ll}
4 & 9 \\
2 & 1
\end{array}\right]^{T}+\left[\begin{array}{ll}
2 & 0 \\
0 & 7
\end{array}\right]^{T}=\left[\begin{array}{ll}
4 & 2 \\
9 & 1
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 7
\end{array}\right]^{T} \\
\\
=\left[\begin{array}{ll}
6 & 2 \\
9 & 8
\end{array}\right]=\left[\begin{array}{ll}
6 & 9 \\
2 & 8
\end{array}\right]^{T}
\end{array}
$$

- Scalar multiplication is carried out by multiplying each element of the matrix by the scalar.

$$
\begin{gathered}
k\left[a_{i j}\right]=\left[k a_{i j}\right]=\left[a_{i j}\right] k \\
\text { ex: } 10\left[\begin{array}{ll}
1 & 3 \\
5 & 7
\end{array}\right]=\left[\begin{array}{ll}
10 & 30 \\
50 & 70
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
5 & 7
\end{array}\right] 10 \\
\text { ex: } 2\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
4
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2
\end{array}\right](-2)
\end{gathered}
$$

- Matrix subtraction can be defined by scalar multiplication and addition.

$$
\begin{gathered}
A-B=A+(-1) B \\
\text { ex: }\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right]-\left[\begin{array}{cc}
2 & -5 \\
4 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right]+(-1)\left[\begin{array}{cc}
2 & -5 \\
4 & 0
\end{array}\right] \\
=\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right]+\left[\begin{array}{ll}
-2 & 5 \\
-4 & 0
\end{array}\right]=\left[\begin{array}{ll}
-1 & 7 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

- Two matrices A and B of dimensions $m \times n$ and $n \times q$ respectively are conformable to form the product matrix

$$
C_{m \times q}=A_{m \times n} B_{n \times q}
$$

since the number of columns of the lead matrix A is equal to the number of rows of the lag matrix B.

- The $i j$ th element of the product matrix, $c_{i j}$, is obtained by multiplying the elements of the i th row of A by the corresponding elements of the j th column of B and adding the resulting products.
- $\left[a_{i k}\right]_{m \times n}\left[b_{k j}\right]_{n \times q}=\left[c_{i j}\right]_{m \times q}$, where $c_{i j}=\Sigma_{k} a_{i k} b_{k j}, \forall i, j$
ex: $\left[\begin{array}{ll}1 & 3 \\ 2 & 8 \\ 4 & 0\end{array}\right]_{3 \times 2}\left[\begin{array}{ll}5 & 1 \\ 9 & 3\end{array}\right]_{2 \times 2}=\left[\begin{array}{ll}1(5)+3(9) & 1(1)+3(3) \\ 2(5)+8(9) & 2(1)+8(3) \\ 4(5)+0(9) & 4(1)+0(3)\end{array}\right]$

$$
\begin{aligned}
&=\left[\begin{array}{cc}
32 & 10 \\
82 & 26 \\
20 & 4
\end{array}\right]_{3 \times 2} \\
& \text { ex: }\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right]_{2 \times 2}\left[\begin{array}{lll}
1 & 2 & 2 \\
3 & 1 & 4
\end{array}\right]_{2 \times 3}=\left[\begin{array}{ccc}
14 & 8 & 20 \\
7 & 4 & 10
\end{array}\right]_{2 \times 3}
\end{aligned}
$$

- The transpose matrix of the product matrix $A B$, where A and B are two conformable matrices, is defined as the product of the transposes, with the order of the multiplication reversed.

$$
(A B)^{T}=B^{T} A^{T}
$$

$$
(A B C)^{T}=C^{T}(A B)^{T}=C^{T} B^{T} A^{T}
$$

$$
(A B C D)^{T}=D^{T} C^{T} B^{T} A^{T}
$$

$$
\begin{aligned}
\left(\left[\begin{array}{ll}
1 & 3 \\
2 & 8 \\
4 & 0
\end{array}\right]\left[\begin{array}{ll}
5 & 1 \\
9 & 3
\end{array}\right]\right)^{T} & =\left[\begin{array}{cc}
32 & 10 \\
82 & 26 \\
20 & 4
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
32 & 82 & 20 \\
10 & 26 & 4
\end{array}\right] \\
{\left[\begin{array}{ll}
5 & 1 \\
9 & 3
\end{array}\right]^{T}\left[\begin{array}{ll}
1 & 3 \\
2 & 8 \\
4 & 0
\end{array}\right]^{T} } & =\left[\begin{array}{ll}
5 & 9 \\
1 & 3
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 4 \\
3 & 8 & 0
\end{array}\right]
\end{aligned}
$$

Q: $A B=B A$?
A: In general, the product matrix $A B$ (premultiplying B by A) does not equal the product matrix $B A$ (postmultiplying B by A).
(i) $A B$ or $B A$ may not be well defined.
(ii) Even if both $A B$ and $B A$ are well defined, they are not equal in general.
ex: $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right]_{2 \times 2}, \quad B=\left[\begin{array}{lll}1 & 2 & 2 \\ 3 & 1 & 4\end{array}\right]_{2 \times 3}$

$$
A B=\left[\begin{array}{ccc}
14 & 8 & 20 \\
7 & 4 & 10
\end{array}\right]_{2 \times 3}, \quad \text { while } B A \text { is not well defined. }
$$

- Both of the product matrices $A B$ and $B A$ are well defined only if A and B are square matrices of the same order or for A of dimension $m \times n$ with B of dimension $n \times m$.

$$
\left.\begin{array}{c}
\text { ex: } A=\left[\begin{array}{ll}
2 & 4 \\
1 & 3
\end{array}\right], B=\left[\begin{array}{ll}
1 & 2 \\
2 & 0
\end{array}\right] \\
A B=\left[\begin{array}{ll}
10 & 4 \\
7 & 2
\end{array}\right], B A=\left[\begin{array}{ll}
4 & 10 \\
4 & 8
\end{array}\right] \Rightarrow \mathbf{A B} \neq \mathbf{B A} \\
\text { ex: } A=\left[\begin{array}{ccc}
5 & 1 & 0 \\
2 & 1 & -1
\end{array}\right], B=\left[\begin{array}{ll}
4 & 3 \\
1 & 1 \\
0 & 2
\end{array}\right] \\
A B
\end{array}\right]\left[\begin{array}{cc}
21 & 16 \\
9 & 5
\end{array}\right], B A=\left[\begin{array}{lll}
26 & 7 & -3 \\
7 & 2 & -1 \\
4 & 2 & -2
\end{array}\right] \Rightarrow \mathbf{A B} \neq \mathbf{B A}
$$

- The multiplication of any matrix and a (conformable) null matrix is a null matrix.
ex: $\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right]\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
- The multiplication of any matrix and a (conformable) identity matrix is the matrix itself.
ex: $\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right]$

$$
\mathbf{Q}: A B=\mathbf{0} \Rightarrow A=\mathbf{0} \text { or } B=\mathbf{0} \text { ? }
$$

ex: $\left[\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}-2 & 4 \\ 1 & -2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$

A: Negative!

Q: $C D=C E \Rightarrow D=E$?
ex: $\left[\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]=\left[\begin{array}{cc}5 & 8 \\ 15 & 24\end{array}\right]=\left[\begin{array}{ll}2 & 3 \\ 6 & 9\end{array}\right]\left[\begin{array}{cc}-2 & 1 \\ 3 & 2\end{array}\right]$
A: Negative!

- The matrix A^{n} is the product matrix obtained by multiplying the square matrix A by itself n times.
- A square matrix A of any order is idempotent if

$$
A=A^{2}=A^{3}=\cdots
$$

where $A^{2}=A A, A^{3}=A A A$, etc.
ex: $A=\left[\begin{array}{rrr}1 / 6 & -1 / 3 & 1 / 6 \\ -1 / 3 & 2 / 3 & -1 / 3 \\ 1 / 6 & -1 / 3 & 1 / 6\end{array}\right]$

- The trace of a square matrix A is given by the sum of the elements of the main diagonal. In other words, if A is $n \times n$, then the trace is defined as

$$
\operatorname{trace}\left(A_{n}\right)=a_{11}+a_{22}+\cdots+a_{n n}
$$

ex: $A=\left[\begin{array}{ll}5 & 9 \\ 1 & 3\end{array}\right], \quad \operatorname{trace}(A)=8$

$$
B=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \quad \operatorname{trace}(B)=15
$$

- For two matrices A and B of dimensions $m \times n$ and $n \times m$ respectively, we have that $A B$ is $m \times m$ and $B A$ is $n \times n$ and

$$
\operatorname{trace}(A B)=\operatorname{trace}(B A)
$$

proof:
Let $C=A B$ and $D=B A$.
$\begin{aligned} \operatorname{trace}(A B)=\sum_{i=1}^{m} c_{i i} & =\sum_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} b_{j i}\right) \\ & =\sum_{j=1}^{n}\left(\sum_{i=1}^{m} b_{j i} a_{i j}\right)=\sum_{j=1}^{n} d_{j j}=\operatorname{trace}(B A)\end{aligned}$

- The inverse matrix A^{-1} of a square matrix A of order n is the matrix that satisfies the condition that

$$
A A^{-1}=A^{-1} A=I_{n}
$$

where I_{n} is the identity matrix of order n.

- Any matrix A for which A^{-1} does not exist is known as a singular matrix.
- The matrix A for which A^{-1} exists is known as a nonsingular matrix.

Properties of the Inverse

- The inverse of an inverse matrix reproduces the original matrix

$$
\left(A^{-1}\right)^{-1}=A
$$

- The inverse of a matrix is unique
- $(A B)^{-1}=B^{-1} A^{-1}$, provided that (i) A and B are of the same order, and (ii) A^{-1} and B^{-1} both exist.
- The inverse of the transpose equals the transpose of the inverse

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

- The inverse of an inverse matrix reproduces the original matrix

$$
\left(A^{-1}\right)^{-1}=A
$$

proof:

Let $B=\left(A^{-1}\right)^{-1}$.
$\because A^{-1} B=A^{-1}\left(A^{-1}\right)^{-1}=I$
$\Rightarrow A A^{-1} B=A I$
$\therefore B=A$
Done!

- The inverse of a matrix is unique proof:

Assume that $A B=I$.
$\because A^{-1} A B=A^{-1} I$
$\Rightarrow B=A^{-1}$
\therefore Any conformable matrix B satisfying $A B=I$ must be A^{-1}.

Done!

- $(A B)^{-1}=B^{-1} A^{-1}$, provided that (i) A and B are of the same order, and (ii) A^{-1} and B^{-1} both exist. proof:

$$
\begin{aligned}
& (A B)^{-1}(A B)=I \\
\Rightarrow & (A B)^{-1} A B B^{-1} A^{-1}=I B^{-1} A^{-1} \\
\Rightarrow & (A B)^{-1}=B^{-1} A^{-1}
\end{aligned}
$$

Done!

- The inverse of the transpose equals the transpose of the inverse

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

proof:

$$
\begin{aligned}
& \left(A^{-1}\right)^{T} A^{T}=\left(A A^{-1}\right)^{T}=I^{T}=I \\
\Rightarrow & \left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}
\end{aligned}
$$

For a system of linear equations,

$$
\begin{aligned}
x+2 y-2 z & =0 \\
-x+y+z & =5 \\
4 x-y+2 z & =13
\end{aligned}
$$

there are three interesting questions:

- Does a solution exist?
- How many solutions are there?
- Is there an efficient algorithm that computes actual solutions?

Way 1: Substitution

$$
\begin{align*}
& x+2 y-2 z=0 \quad(1 a) \\
& -x+y+z=5 \\
& 4 x-y+2 z=13 \\
& \text { (1b) } \\
& \Rightarrow \begin{aligned}
3 y-z & =5 \\
-9 y+10 z & =13
\end{aligned} \\
& \Rightarrow \quad 21 y=63 \tag{2c}\\
& \text { (3c) } \\
& \Rightarrow \quad y=3, \quad z=4, \quad x=2
\end{align*}
$$

Way 2: Gaussian Elimination

$$
\begin{aligned}
1 x+2 y-2 z & =0 \\
-x+y+z & =5 \\
4 x-y+2 z & =13
\end{aligned}
$$

\Rightarrow

$$
\begin{aligned}
x+2 y-2 z & =0 \\
3 y-z & =5 \\
-9 y+10 z & =13
\end{aligned}
$$

\Rightarrow

$$
\begin{aligned}
x+2 y-2 z & =0 \\
3 y-z & =5 \\
7 z & =28
\end{aligned}
$$

$\Rightarrow \quad z=4, \quad y=3, \quad x=2$ (back substitution)

Way 2': Gauss-Jordan Elimination

$$
\begin{aligned}
x+2 y-2 z & =0 \\
3 y-z & =5 \\
z & =4
\end{aligned}
$$

\Rightarrow

$$
\begin{aligned}
x+2 y & =8 \\
3 y & =9 \\
z & =4
\end{aligned}
$$

$$
x
$$

$$
\begin{array}{rlr}
& =2 & (1 c) \\
& =3 & (2 c) \\
z & =4 & (3 d)
\end{array}
$$

$$
\begin{aligned}
x+2 y+3 z & =1 \\
3 x+2 y+z & =1
\end{aligned}
$$

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right] \text { is called the coefficient matrix of the system }
$$

$$
\text { and }\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
3 & 2 & 1 & 1
\end{array}\right] \text { the augmented matrix. }
$$

- A row of a matrix is said to have k leading zeros if the first k elements of the row are all zeros and the $(k+1)$ th element of the row is not zero.
- A matrix is in row echelon form if each row has more leading zeros than the row preceding it.
- The first nonzero entry in each row of a row echelon matrix is called a pivot.

$$
\left[\begin{array}{ccc|c}
1 & 2 & -2 & 0 \\
0 & 3 & -1 & 5 \\
0 & 0 & 7 & 28
\end{array}\right]
$$

- Elementary row operations:

1. interchange two rows of a matrix
2. multiply each element in a row by the same nonzero number
3. change a row by adding to it a multiple of another row

- A row echelon matrix in which (1) each pivot is a 1 and (2) each column containing a pivot contains no other nonzero entries is said to be in reduced row echelon form.

$$
\left[\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 4
\end{array}\right]
$$

$$
\begin{gathered}
x+2 y+3 z=1 \\
3 x+2 y+z=1 \\
{\left[\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
3 & 2 & 1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & 1 \\
0 & -4 & -8 & -2
\end{array}\right]} \\
\Rightarrow\left[\begin{array}{lll|l}
1 & 2 & 3 & 1 \\
0 & 1 & 2 & 0.5
\end{array}\right] \Rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0.5
\end{array}\right] \\
\Rightarrow \quad \begin{array}{l}
x=z \\
y
\end{array} \\
y=0.5-2 z
\end{gathered}
$$

$$
\begin{aligned}
& x+3 y=1 \\
& 3 x+=1 \\
& 2 x+3 y=1
\end{aligned} \Rightarrow\left[\begin{array}{ll|r}
1 & 3 & 1 \\
3 & 1 & 1 \\
2 & 3 & 1
\end{array}\right],
$$

$$
\begin{aligned}
x+3 y & =1 \\
3 x+y & =1 \\
2 x+2 y & =1
\end{aligned} \Rightarrow\left[\begin{array}{ll|r}
1 & 3 & 1 \\
3 & 1 & 1 \\
2 & 2 & 1
\end{array}\right]
$$

$$
B=\left[\begin{array}{lllllll|l}
1 & w & w & 0 & 0 & w & 0 & d \\
0 & 0 & 0 & 1 & 0 & w & 0 & d \\
0 & 0 & 0 & 0 & 1 & w & 0 & d \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & d
\end{array}\right]
$$

where w, d may be either zero or nonzero.

- If the j th column of the row echelon matrix B contains a pivot, then x_{j} is called a basic variable.
- If the j th column of B does not contain a pivot, then we call x_{j} a free variable.
- The rank of a matrix is the number of nonzero rows in its row echelon form.
- Let A be the coefficient matrix and \widehat{A} be the corresponding augmented matrix. Then

1. $\operatorname{rank}(A) \leq \operatorname{rank}(\widehat{A})$
2. $\operatorname{rank}(A) \leq$ number of rows of A
3. $\operatorname{rank}(A) \leq \#$ col.s of A

- A system of linear equations with coefficient matrix A and augmented matrix \widehat{A} has a solution if and only if

$$
\operatorname{rank}(A)=\operatorname{rank}(\widehat{A})
$$

- A system of linear equations must have either (1) no solution, (2) one solution, or (3) infinitely many solutions.
- If a system has exactly one solution, then A has at least as many rows(or equations) as columns(or unknowns).

$$
\# \text { rows of } A \geq \# \text { col.s of } A
$$

- If a system has more unknowns than equations, then it must have either no solution or infinitely many solutions.
- If a system in which all the elements in RHS are 0 , then it is called homogeneous and must have at least one solution.
- A homogeneous system of linear equations which has more unknowns than equations must have infinitely many solutions.
- A system with A will have a solution for every RHS if and only if

$$
\operatorname{rank}(A)=\# \text { rows of } A
$$

- If a system has more equations than unknowns, then there exists an RHS such that the resulting system has no solution.
- Any system having A will have at most one solution for every RHS if and only if

$$
\operatorname{rank}(A)=\# \operatorname{col} . \mathrm{s} \text { of } A
$$

- A system has exactly one solution for every RHS if and only if

$$
\# \text { rows of } A=\# \text { col.s of } A=\operatorname{rank}(A)
$$

$$
\begin{aligned}
& 5 x+2 y=3 \\
& -x-4 y=3 \\
& \Rightarrow\left[\begin{array}{cc}
5 & 2 \\
-1 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right] \\
& 4 x-y+2 z=13 \\
& x+2 y-2 z=0 \\
& -x+y+z=5 \\
& \Rightarrow\left[\begin{array}{rrr}
4 & -1 & 2 \\
1 & 2 & -2 \\
-1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{r}
13 \\
0 \\
5
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=d_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=d_{2} \\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=d_{n} \\
\Rightarrow \quad\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right] \\
n \times 1
\end{gathered}
$$

Quiz

Consider the linear system of equations $A \mathbf{x}=\mathbf{d}$.
If \# equations $<\#$ unknowns, then

- $A \mathbf{x}=\mathbf{0}$ has infinitely many solutions.
- for any given $\mathbf{d}, A \mathbf{x}=\mathbf{d}$ has 0 or infinitely many solutions.
- if $\operatorname{rank}(A)=\#$ equations, $A \mathbf{x}=\mathbf{d}$ has infinitely many solutions for every d.

Quiz

Consider the linear system of equations $A \mathbf{x}=\mathbf{d}$.
If \# equations > \# unknowns, then

- $A \mathbf{x}=\mathbf{0}$ has one or infinitely many solutions.
- for any given $\mathbf{d}, A \mathbf{x}=\mathbf{d}$ has 0,1 , or infinitely many solutions.
- if $\operatorname{rank}(A)=\#$ unknowns, $A \mathbf{x}=\mathbf{d}$ has 0 or 1 solution for every d.

Quiz

Consider the linear system of equations $A \mathbf{x}=\mathbf{d}$.
If \# equations $=\#$ unknowns, then

- $A \mathbf{x}=\mathbf{0}$ has one or infinitely many solutions.
- for any given $\mathbf{d}, A \mathbf{x}=\mathbf{d}$ has 0,1 , or infinitely many solutions.
- if $\operatorname{rank}(A)=\#$ equations $=\#$ unknowns, $A \mathbf{x}=\mathbf{d}$ has exactly one solution for every \mathbf{d}.

Given A is a square matrix. Then

$$
\begin{aligned}
& A \mathbf{x}=\mathbf{d} \\
\Rightarrow & A^{-1} A \mathbf{x}=A^{-1} \mathbf{d} \\
\Rightarrow & \mathbf{x}=A^{-1} \mathbf{d}
\end{aligned}
$$

Q: When does a system of linear equations $A \mathbf{x}=\mathbf{d}$ have a unique solution?
$\mathbf{A}: A^{-1}$ exists (i.e., A is nonsingular).
Q: Show that $A \mathbf{x}=\mathbf{d}$ cannot have exactly two different solutions.

- The quantity $a_{11} a_{22}-a_{12} a_{21}$ is called the determinant of the 2×2 square matrix $A=\left[\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ and is composed of all the elements of A. It is denoted by $|A|$ or $\operatorname{det}(A)$.
ex: $\left|\begin{array}{cc}1 & 2 \\ 3 & -1\end{array}\right|=1(-1)-2(3)=-7$
- $\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=\begin{aligned} & \\ & \end{aligned} \begin{aligned} & a_{11} a_{22} a_{33}+a_{21} a_{32} a_{13}+a_{31} a_{23} a_{12} \\ & \\ & -a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{32} a_{23}\end{aligned}$
- Determinants of order higher than 3 must be evaluated by Laplace expansion.
- Consider an $n \times n$ matrix, A, with typical element $a_{i j}$. The minor associated with each element is denoted $M_{i j}$ and is the determinant of the $(n-1) \times(n-1)$ matrix formed by deleting the i th row and j th column of the matrix A.
ex: $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right]_{n \times n}$

$$
\Rightarrow M_{11}=\left|\begin{array}{cccc}
a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{32} & a_{33} & \cdots & a_{3 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 2} & a_{n 3} & \cdots & a_{n n}
\end{array}\right|_{(n-1) \times(n-1)}
$$

- The cofactor of element $a_{i j}$ is the minor of that element multiplied by $(-1)^{i+j}$, and is denoted $C_{i j}$:

$$
C_{i j}=(-1)^{i+j} M_{i j}, \quad i, j=1,2, \ldots, n
$$

$$
\left|\begin{array}{ccccc}
+ & - & + & \cdots & (-1)^{1+n} \\
- & + & - & \cdots & (-1)^{2+n} \\
+ & - & + & \cdots & (-1)^{3+n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
(-1)^{n+1} & (-1)^{n+2} & (-1)^{n+3} & \cdots & +
\end{array}\right|
$$

$$
\begin{aligned}
A=\left[\begin{array}{cccc}
1 & 3 & 0 & 2 \\
-2 & -5 & 7 & 4 \\
3 & 5 & 2 & 1 \\
-1 & 0 & -9 & -5
\end{array}\right] & \Rightarrow M_{22}=\left|\begin{array}{ccc}
1 & 0 & 2 \\
3 & 2 & 1 \\
-1 & -9 & -5
\end{array}\right|, \quad C_{22}=M_{22} \\
A=\left[\begin{array}{cccc}
1 & 3 & 0 & 2 \\
-2 & -5 & 7 & 4 \\
3 & 5 & 2 & 1 \\
-1 & 0 & -9 & -5
\end{array}\right] & \\
& \Rightarrow M_{14}=\left|\begin{array}{ccc}
-2 & -5 & 7 \\
3 & 5 & 2 \\
-1 & 0 & -9
\end{array}\right|, \quad C_{14}=-M_{14}
\end{aligned}
$$

- The determinant of an $n \times n$ matrix A may be found by adding along any row or column the product of each element $a_{i j}$ and its associated cofactor, that is,

$$
|A|=\sum_{j=1}^{n} a_{i j} C_{i j}=\sum_{i=1}^{n} a_{i j} C_{i j}
$$

by i th row by j th column
ex: $\left|\begin{array}{ccc}3 & 0 & 4 \\ 2 & 3 & 2 \\ 0 & 5 & -1\end{array}\right|=3\left|\begin{array}{cc}3 & 2 \\ 5 & -1\end{array}\right|-0\left|\begin{array}{cc}2 & 2 \\ 0 & -1\end{array}\right|+4\left|\begin{array}{cc}2 & 3 \\ 0 & 5\end{array}\right|$

- Properties of Determinant

1. The interchange of rows and columns does not change the value of a determinant. $\quad \Rightarrow \quad|A|=\left|A^{T}\right|$
2. The interchange of any two rows (columns) will alter the sign of the determinant.
3. The multiplication of any one row (column) by a scalar λ will change the value of the determinant λ-fold.
4. The addition (subtraction) of a multiple of any row (column) to (from) another row (column) will leave the value of the determinant unchanged.
5. The expansion of a determinant by alien cofactors (the cofactors of a "wrong" row or column) always yields zero.
$\Rightarrow \sum_{j=1}^{n} a_{i j} C_{k j}=\left|A^{*}\right|$
$=|A|$'s k th row replaced by its i th row
\Rightarrow the k th row and the i th row in $\left|A^{*}\right|$ are identical
$\Rightarrow\left|A^{*}\right|=0$

- An $n \times n$ matrix, A, has an associated cofactor matrix that is also $n \times n$ and is formed by replacing each $a_{i j}$ with its associated cofactor.

$$
\left[\begin{array}{cccc}
C_{11} & C_{12} & \cdots & C_{1 n} \\
C_{21} & C_{22} & \cdots & C_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
C_{n 1} & C_{n 2} & \cdots & C_{n n}
\end{array}\right]
$$

- The adjoint matrix of an $n \times n$ matrix A, denoted $\operatorname{adj}(A)$, is the transpose of the cofactor matrix of A.
- The inverse of an $n \times n$ matrix A is the adjoint matrix of A divided by the determinant of A :
$A^{-1}=\frac{1}{|A|} \operatorname{adj}(A)$

$$
\left.\begin{array}{l}
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \Rightarrow \operatorname{adj}(A)=\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right] \\
\Rightarrow A \operatorname{adj}(A)=\left[\begin{array}{cccc}
\sum_{j=1}^{n} a_{1 j} C_{1 j} & \sum_{j=1}^{n} a_{1 j} C_{2 j} & \cdots & \sum_{j=1}^{n} a_{1 j} C_{n j} \\
\sum_{j=1}^{n} a_{2 j} C_{1 j} & \sum_{j=1}^{n} a_{2 j} C_{2 j} & \cdots & \sum_{j=1}^{n} a_{2 j} C_{n j} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{j=1}^{n} a_{n j} C_{1 j} & \sum_{j=1}^{n} a_{n j} C_{2 j} & \cdots & \sum_{j=1}^{n} a_{n j} C_{n j}
\end{array}\right] \\
=\left[\begin{array}{cc}
|A| & 0 \\
0 & \ddots
\end{array}\right]=|A| I_{n}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { ex: } B=\left[\begin{array}{ll}
1 & 0 \\
9 & 2
\end{array}\right] \quad C=\left[\begin{array}{ccc}
4 & -2 & 1 \\
7 & 3 & 3 \\
2 & 0 & 1
\end{array}\right] \\
& \Rightarrow B^{-1}=\frac{1}{|B|} \operatorname{adj}(B)=\frac{1}{2}\left[\begin{array}{cc}
2 & -9 \\
0 & 1
\end{array}\right]^{T}=\left[\begin{array}{cc}
1 & 0 \\
-4.5 & 0.5
\end{array}\right] \\
& \Rightarrow C^{-1}=\frac{1}{|C|} \operatorname{adj}(C) \\
&=\frac{1}{8}\left[\begin{array}{ccc}
3 & -1 & -6 \\
2 & 2 & -4 \\
-9 & -5 & 26
\end{array}\right]=\frac{1}{8}\left[\begin{array}{ccc}
3 & 2 & -9 \\
-1 & 2 & -5 \\
-6 & -4 & 26
\end{array}\right]
\end{aligned}
$$

- $|A| \neq 0 \quad \Leftrightarrow \quad A^{-1}$ exists $\Leftrightarrow A$ is nonsingular $\Leftrightarrow \quad A \mathbf{x}=\mathbf{d}$ has a unique solution.
- Cramer's Rule

$$
\begin{gathered}
A \mathbf{x}=\mathbf{d} \\
\Rightarrow \quad \mathbf{x}=A^{-1} \mathbf{d}=\frac{1}{|A|} \operatorname{adj}(A) \mathbf{d} \\
\Rightarrow\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=\frac{1}{|A|}\left[\begin{array}{ccc}
C_{11} & \cdots & C_{n 1} \\
\vdots & \ddots & \vdots \\
C_{1 n} & \cdots & C_{n n}
\end{array}\right]\left[\begin{array}{c}
d_{1} \\
\vdots \\
d_{n}
\end{array}\right]=\frac{1}{|A|}\left[\begin{array}{c}
\sum_{i=1}^{n} d_{i} C_{i 1} \\
\vdots \\
\sum_{i=1}^{n} d_{i} C_{i n}
\end{array}\right]
\end{gathered}
$$

Note that $\sum_{i=1}^{n} d_{i} C_{i j}$ is nothing but the evaluation of the determinant derived from A by replacing its j th column by \mathbf{d}.
ex: $\left[\begin{array}{ccc}4 & -1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}13 \\ 0 \\ 5\end{array}\right]$
$x=\frac{1}{\Delta}\left|\begin{array}{ccc}13 & -1 & 2 \\ 0 & 2 & -2 \\ 5 & 1 & 1\end{array}\right|, \quad y=\frac{1}{\Delta}\left|\begin{array}{ccc}4 & 13 & 2 \\ 1 & 0 & -2 \\ -1 & 5 & 1\end{array}\right|$,
$z=\frac{1}{\Delta}\left|\begin{array}{ccc}4 & -1 & 13 \\ 1 & 2 & 0 \\ -1 & 1 & 5\end{array}\right|, \quad$ where $\Delta=\left|\begin{array}{ccc}4 & -1 & 2 \\ 1 & 2 & -2 \\ -1 & 1 & -1\end{array}\right|$

Determ	Vector d nant $\|A\|$	$\mathbf{d} \neq \mathbf{0}$ (nonhomogeneous system)	$\mathbf{d}=\mathbf{0}$ (homogeneous system)
$\|A\| \neq 0$ (A is nonsingular)		a unique, nontrivial solution $\mathrm{x} \neq \mathbf{0}$	a unique, trivial solution $\mathrm{x}=\mathbf{0}$
$\|\|A\|=0$ (A is singular)	dependent	infinite number of solutions	infinite number of solutions
	onsistent	no solution	not applicable

- A triangular matrix is composed of a nonzero element in the positions above (below) the main diagonal and zero in the positions below (above).
- The determinant of a triangular matrix equals the product of the diagonal elements.

$$
\begin{aligned}
& \text { ex: } A=\left[\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right] \Rightarrow|A|=\left|\begin{array}{ll}
1 & 0 \\
2 & 2
\end{array}\right|=2 \\
& B=\left[\begin{array}{lll}
4 & 0 & 0 \\
7 & 3 & 0 \\
2 & 1 & 5
\end{array}\right] \Rightarrow|B|=\left|\begin{array}{lll}
4 & 0 & 0 \\
7 & 3 & 0 \\
2 & 1 & 5
\end{array}\right|=60
\end{aligned}
$$

- Let $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right] \in \mathbb{R}^{n} \quad$ so that $\mathbf{v}^{T}=\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]$
- The length of an n-dimensional vector \mathbf{v} is

$$
\|\mathbf{v}\|=\sqrt{\mathbf{v}^{T} \mathbf{v}}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}
$$

- Two vectors in $\mathbb{R}^{2}, \mathbf{u}$ and \mathbf{v}, are linearly independent if

$$
\lambda_{1} \mathbf{u}+\lambda_{2} \mathbf{v}=\mathbf{0}
$$

holds only when the scalars λ_{1} and λ_{2} are both zero. Here $\mathbf{0}$ is the null vector.

- Otherwise, if there exist λ_{1} and λ_{2} are neither zero, then \mathbf{u} and \mathbf{v} would point in the same direction and be linearly dependent. That is,

$$
\mathbf{u}=-\frac{\lambda_{2}}{\lambda_{1}} \mathbf{v}
$$

- Any vector in \mathbb{R}^{2} can be expressed as a linear combination of two linearly independent vectors in \mathbb{R}^{2}.

proof:

Given two linearly independent vectors, \mathbf{v} and \mathbf{w} in \mathbb{R}^{2}. For any vector \mathbf{u}, we write $\mathbf{u}=\lambda_{1} \mathbf{v}+\lambda_{2} \mathbf{w}$ and if $\lambda=\left[\begin{array}{ll}\lambda_{1} & \lambda_{2}\end{array}\right]^{T}$ has a solution, then the proof is done.

$$
\lambda_{1} \mathbf{v}+\lambda_{2} \mathbf{w}=\left[\begin{array}{ll}
v_{1} & w_{1} \\
v_{2} & w_{2}
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\mathbf{u}
$$

Since \mathbf{v} and \mathbf{w} are linearly independent, $\left|\begin{array}{ll}v_{1} & w_{1} \\ v_{2} & w_{2}\end{array}\right| \neq 0$ which means λ has a solution.

- Let $\mathcal{V}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a set of vectors in \mathbb{R}^{m}, then the vectors in \mathcal{V} are linearly dependent iff
(i) some one of them can be expressed as a linear combination of the remaining vectors, or
(ii) there exists a set of scalars, $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ (which are not all zero), such that

$$
\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i}=\lambda_{1} \mathbf{v}_{1}+\lambda_{2} \mathbf{v}_{2}+\cdots+\lambda_{n} \mathbf{v}_{n}=\mathbf{0}
$$

- If $\sum_{i=1}^{n} \lambda_{i} \mathbf{v}_{i}=0$ only holds when $\lambda_{i}=0, \forall i$, then these vectors are linearly independent.
- If \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^{n}, then $\mathbf{v}+\mathbf{w}$ is a vector in \mathbb{R}^{n} and so is $\lambda \mathbf{v}$. We say that \mathbb{R}^{n} is a vector space for which addition and scalar multiplication can be defined and which is closed under these operations.
- Once we have found n linearly independent vectors in the n-space, all the other vectors in the space can be expressed as a linear combination of these n vectors.
- A basis is a set of linearly independent vectors that generates all vectors in the space.
$\mathbf{e x :} \mathbf{e}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right] \Longrightarrow \mathbb{R}^{2}$
$\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \Longrightarrow \mathbb{R}^{3}$

Univariate Calculus

and Optimization

refer to textbook
Ch. 6 Comparative Statics and the Concept of Derivative
Ch. 7 Rules of Differentiation and Their Use in Comparative Statics

Ch. 8 Comparative-Static Analysis of General-Function Models
Ch. 9 Optimization: A Special Variety of Equilibrium Analysis
Ch. 10 Exponential and Logarithmic Functions

- A sequence of real numbers is an assignment of a real number to each natural number, usually written as $\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots\right\}$ or $\left\{x_{n}\right\}_{n=1}^{\infty}$.
ex: $\{1,2,3,4, \ldots\}(F 1$.$) \quad ex: \left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ (F2.)
ex: $\left\{1, \frac{1}{2}, 4, \frac{1}{8}, 16, \ldots\right\}(F 3$.$) \quad ex: \left\{0,-\frac{1}{2}, \frac{2}{3},-\frac{3}{4}, \frac{4}{5}, \ldots\right\}$ (F4.)
ex: $\{-1,1,-1,1,-1, \ldots\}$ (F5.) ex: $\left\{\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \ldots\right\}$ (F6.)
ex: $\{3.1,3.14,3.141,3.1415, \ldots\}(F 7$.
- $\{1,2,3,4, \ldots\}$

- $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$

- $\left\{1, \frac{1}{2}, 4, \frac{1}{8}, 16, \ldots\right\}$

- $\left\{0,-\frac{1}{2}, \frac{2}{3},-\frac{3}{4}, \frac{4}{5}, \ldots\right\}$

- $\{-1,1,-1,1,-1, \ldots\}$

- $\left\{\frac{2}{1}, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \ldots\right\}$

- $\{3.1,3.14,3.141,3.1415, \ldots\}$

There are basically 3 kinds of sequences:

- sequences in which the entries get closer and closer and stay close to some limiting value
- sequences in which the entries increase (or decrease) without bound
- sequences in which the entries jump back and forth on the number line
- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence of real numbers and let r be a real number. We say that r is the limit of this sequence if for any (small) positive number ϵ, there is a positive integer N such that for all $n \geq N, x_{n}$ is in the ϵ-interval about r, i.e.,

$$
\left|x_{n}-r\right|<\epsilon
$$

then we say that the sequence converges to r and write

$$
\lim x_{n}=r \quad \text { or } \quad \lim _{n \rightarrow \infty} x_{n}=r \quad \text { or } \quad x_{n} \rightarrow r .
$$

Note

1. The elements of the converging sequence need not be distinct from each other or distinct from the limit.
2. The convergence need not be all from one side.
3. The convergence need not be monotonic: each element need not be closer to the limit than all previous elements.
accumulation point (or cluster point)
If for any positive ϵ there are infinitely many elements of the sequence in the interval $I_{\epsilon}(r)$, then r is a cluster point of the sequence.

- A sequence can have at most one limit.

Proof: Suppose that a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ has two limits: r_{1} and r_{2}. Take ϵ to be some number less than $\frac{1}{2}\left|r_{1}-r_{2}\right|$, say $\epsilon=\frac{1}{4}\left|r_{1}-r_{2}\right|$, so that $I_{\epsilon}\left(r_{1}\right)$ and $I_{\epsilon}\left(r_{2}\right)$ are disjoint intervals.

Since $x_{n} \rightarrow r_{1}$, there is an N_{1} such that for $n \geq N_{1}$ all the x_{n} are in $I_{\epsilon}\left(r_{1}\right)$. Similarly, there is an N_{2} such that for $n \geq N_{2}$ all the x_{n} are in $I_{\epsilon}\left(r_{2}\right)$. Hence, for all $n \geq \max \left\{N_{1}, N_{2}\right\}, x_{n}$ are in both $I_{\epsilon}\left(r_{1}\right)$ and $I_{\epsilon}\left(r_{2}\right)$.

But no point can be in both two disjoint intervals \Rightarrow Contradiction!

- When we say $x \rightarrow a$, the variable x can approach the number a either from values less than a (written $x \rightarrow a^{-}$), or from values greater than $a\left(\right.$ written $\left.x \rightarrow a^{+}\right)$.
- If, as $x \rightarrow a$ from the left side, the function $f(x)$ approaches a finite number L_{1}, written

$$
\lim _{x \rightarrow a^{-}} f(x)=L_{1},
$$

then we call L_{1} the left-hand limit of $f(x)$ at $x=a$.

- If, as $x \rightarrow a$ from the right side, the function $f(x)$ approaches a finite number L_{2}, written

$$
\lim _{x \rightarrow a^{+}} f(x)=L_{2},
$$

then we call L_{2} the right-hand limit of $f(x)$ at $x=a$.

- If for any $\epsilon>0$, however small, there exists some $\delta>0$, such that $\left|f(x)-L_{1}\right|<\epsilon, \forall x$ satisfying $a-\delta<x<a$, then the left-hand limit exists and is equal to L_{1}.
- If for any $\epsilon>0$, however small, there exists some $\delta>0$, such that $\left|f(x)-L_{2}\right|<\epsilon, \forall x$ satisfying $a<x<a+\delta$, then the right-hand limit exists and is equal to L_{2}
- Suppose that a function $y=f(x)$ is defined on some open interval including the point a. We say that the limit of $f(x)$ at $x=a$, that is, $\lim _{x \rightarrow a} f(x)$, exists if
(i) $L_{1}=\lim _{x \rightarrow a^{-}} f(x)$ and $L_{2}=\lim _{x \rightarrow a^{+}} f(x)$ exist and
(ii) $L_{1}=L_{2}=L$.
- Note that $\lim _{x \rightarrow a} f(x)$ (the limit of $f(x)$ at $x=a$) is distinct from $f(a)$ (the function value of $f(x)$ at $x=a$).

The Formal Definition of Limit

- As $x \rightarrow a$, the limit of $f(x)$ is the finite number L if, given any positive ϵ (however small), there can be found a positive number δ such that

$$
|f(x)-L|<\epsilon \text { for } 0<|x-a|<\delta
$$

Limit Theorems

- If $\lim _{x \rightarrow a} f(x)=f_{0}$ and $\lim _{x \rightarrow a} g(x)=g_{0}$, then
(1) $\lim _{x \rightarrow a}[f(x) \pm g(x)]=f_{0} \pm g_{0}$
(2) $\lim _{x \rightarrow a} f(x) g(x)=f_{0} g_{0}$
(3) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f_{0}}{g_{0}}, \quad\left(g_{0} \neq 0\right)$
ex: $\lim _{x \rightarrow a} x=a$
ex: $\lim _{x \rightarrow a} k=k$
ex: $\lim _{x \rightarrow a} \gamma x+\delta=\lim _{x \rightarrow a} \gamma \lim _{x \rightarrow a} x+\lim _{x \rightarrow a} \delta=\gamma a+\delta$
ex: $\lim _{x \rightarrow a} x^{n}=\left(\lim _{x \rightarrow a} x\right)^{n}=a^{n}$
- A function $f(x)$, which is defined on an open interval including the point $x=a$, is continuous at a if
(i) $\lim _{x \rightarrow a} f(x)$ exists and
(ii) $\lim _{x \rightarrow a} f(x)=f(a)$.
- A function $f(x)$, which is defined on an open interval including the point $x=a$, is continuous at that point if, given any positive ϵ (however small), there can be found a positive number δ such that $|f(x)-f(a)|<\epsilon$, whenever $|x-a|<\delta$.
- A function that is not continuous is said to be discontinuous.
- Suppose that $f(x)$ and $g(x)$ are continuous functions and that $c \neq 0$ is a constant. The following are also continuous:
(i) $c f(x)$
(ii) $f(x)+c$
(iii) $f(x) \pm g(x)$
(iv) $f(x) g(x)$
(v) $f(x) / g(x)$ for $g(x) \neq 0$
(vi) $f^{-1}(\cdot)$, if it exists
- Let $f(x)$ be defined on the closed interval $[a, b], x \in \mathbb{R}$ and $a<b$. We say that
(i) $f(x)$ is continuous from the right at the point $x=a$ if $\lim _{x \rightarrow a^{+}} f(x)$ exists, $f(a)$ exists, and $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
(ii) $f(x)$ is continuous from the left at the point $x=b$ if $\lim _{x \rightarrow b^{-}} f(x)$ exists, $f(b)$ exists, and $\lim _{x \rightarrow b^{-}} f(x)=f(b)$.
(iii) $f(x)$ is continuous on the closed interval $[a, b]$ if it is (1) continuous at every point x strictly within the interval (i.e., $a<x<b$), (2) continuous from the right at $x=a$ and (3) continuous from the left at $x=b$.
- (Intermediate-value theorem)

Suppose that $f(x)$ is a continuous function on the closed interval $[a, b]$ and that $f(a) \neq f(b)$. Then, for any number \bar{y} between $f(a)$ and $f(b)$, there is some value of x, say $x=c$, between a and b such that $\bar{y}=f(c)$.

ex: If the demand and supply functions are continuous and the following two conditions are satisfied:
(i) at zero price, $D(0)>S(0)$,
(ii) there exists some price, $\hat{p}>0$, at which $S(\hat{p})>D(\hat{p})$,
then there exists a positive equilibrium price in the market.

Hint: Let $Z(p)=D(p)-S(p)$

- Given two points $P=\left(x_{1}, f\left(x_{1}\right)\right)$ and $Q=\left(x_{2}, f\left(x_{2}\right)\right)$ on the graph of a function $y=f(x)$, we define the secant line as the straight line joining these two points and its slope is
$m_{P Q}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}$

- If the function $y=f(x)$ is defined on some open interval including the point $P=\left(x_{1}, f\left(x_{1}\right)\right)$ and $\lim _{\Delta x \rightarrow 0} m_{P Q}$ exists, then the line passing through the point P with slope equal to $\lim _{\Delta x \rightarrow 0} m_{P Q}$ is the tangent line of the function $y=f(x)$ at P.

$$
f(x)
$$

- The derivative of a function $y=f(x)$ at the point $P=\left(x_{1}, f\left(x_{1}\right)\right)$ is the slope of the tangent line at that point.

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} m_{P Q}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

where $\Delta x=x_{2}-x_{1}$. We can also write this as

$$
f^{\prime}\left(x_{1}\right)=\lim _{\Delta x \rightarrow 0} m_{P Q}=\lim _{\Delta x \rightarrow 0} \frac{f\left(x_{1}+\Delta x\right)-f\left(x_{1}\right)}{\Delta x}
$$

- If $f^{\prime}(x)$ exists (i.e., the function $f(x)$ is differentiable) at the point $x=a$, then the function $f(x)$ must also be continuous at this point.

Proof:

$$
\begin{aligned}
& \lim _{x \rightarrow a}[f(x)-f(a)]=\lim _{x \rightarrow a} f(x)-f(a) \\
& \lim _{x \rightarrow a}\left[\frac{f(x)-f(a)}{x-a}(x-a)\right]=\lim _{x \rightarrow a}\left[\frac{f(x)-f(a)}{x-a}\right] \lim _{x \rightarrow a}(x-a) \\
&=f^{\prime}(a)\left(\lim _{x \rightarrow a} x-a\right)=0
\end{aligned}
$$

- The smoothness of a primitive function, $f(x)$, can be linked to the continuity of its derivative function, $f^{\prime}(x)$. That is, if a certain function is smooth everywhere on the domain, it is referred to as a continuously differentiable function.
- A function $f(x)$ defined on the domain $x \in[a, b]$ is differentiable on $[a, b]$ if
(1) the right-hand derivative for $f(x)$ exists at $x=a$,
(2) the left-hand derivative exists at $x=b$,
(3) $f(x)$ is differentiable at every point in the open set (a, b).

Rules of Differentiation

- $f(x)=k$ (a constant) $\Rightarrow f^{\prime}(x)=0$
- $f(x)=x^{n} \quad \Rightarrow \quad f^{\prime}(x)=n x^{n-1}$
- $\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)$
ex: $f(x)=4 x^{4}-x^{3}+17 x^{2}+3 x-1$
$f^{\prime}(x)=16 x^{3}-3 x^{2}+34 x+3$
$f^{\prime \prime}(x)=48 x^{2}-6 x+34$
$f^{\prime \prime \prime}(x)=96 x-6 \quad f^{(4)}(x)=96 \quad f^{(5)}(x)=0$
- $\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
ex: $\frac{d}{d x}\left[(2 x+3)\left(3 x^{2}\right)\right]=(2)\left(3 x^{2}\right)+(2 x+3)(6 x)=18 x^{2}+18 x$
- $\frac{d}{d x}[f(x) g(x) h(x)]=$ $f^{\prime}(x) g(x) h(x)+f(x) g^{\prime}(x) h(x)+f(x) g(x) h^{\prime}(x)$
- $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
ex: $\frac{d}{d x}\left(\frac{2 x-3}{x+1}\right)=\frac{(2)(x+1)-(2 x-3)(1)}{(x+1)^{2}}=\frac{5}{(x+1)^{2}}$

ex:

$$
\begin{aligned}
& A R(q)=P(q) \\
& \Rightarrow T R(q)=A R(q) q=P(q) q \\
& \Rightarrow M R(q)=\frac{d}{d q} T R(q) \\
&=P^{\prime}(q) q+P(q) \\
& \Rightarrow M R(q)-A R(q)=P^{\prime}(q) q<0
\end{aligned}
$$

ex:

$$
\begin{aligned}
M C(q) & A C(q)=\frac{T C(q)}{q} \\
\Rightarrow & \frac{d}{d q} A C(q)=\frac{d}{d q}\left[\frac{T C(q)}{q}\right] \\
& =\frac{\left[\frac{d}{d q} T C(q)\right] q-T C(q)}{q^{2}} \\
\longrightarrow & =\frac{1}{q}[M C(q)-A C(q)]
\end{aligned}
$$

The Chain Rule

- If $y=f(u)$ and $u=g(x)$ so that $y=f(g(x))=h(x)$, then

$$
h^{\prime}(x)=f^{\prime}(u) g^{\prime}(x) \quad \text { or } \quad \frac{d y}{d x}=\left(\frac{d y}{d u}\right)\left(\frac{d u}{d x}\right)
$$

ex:

$$
\begin{aligned}
& T R=T R(q) \text { and } q=q(L) \text { so that } T R=f(L) \\
& \begin{aligned}
\Rightarrow M R P(L)=\frac{d}{d L} f(L) & =\left(\frac{d T R(q)}{d q}\right)\left(\frac{d q(L)}{d L}\right) \\
& =M R(q) M P(L)
\end{aligned}
\end{aligned}
$$

The Derivative of the Inverse of a Function

- If $y=f(x)$ has the inverse function $x=f^{-1}(y)=g(y)$, then

$$
\frac{d x}{d y}=\frac{1}{d y / d x} \quad \text { or } \quad g^{\prime}(y)=\frac{1}{f^{\prime}(x)}
$$

ex:

$$
\begin{aligned}
& T C(L)=w L+C_{0} \text { and } q=q(L)(\text { or } L=L(q)) \\
\Rightarrow & T C(q)=w L(q)+C_{0} \\
\Rightarrow & M C(q)=\frac{d}{d q} T C(q)=w \frac{d L(q)}{d q}=\frac{w}{d q(L) / d L}=\frac{w}{M P(L)}
\end{aligned}
$$

- For a function $y=f(x)$, which is assumed to be n th-order continuously differentiable,
(i) the first derivative function (the slope of f):

$$
f^{\prime}(x)=\frac{d y}{d x}
$$

(ii) the second derivative function (the rate of change of the slope of f):

$$
f^{\prime \prime}(x)=\frac{d}{d x}\left[f^{\prime}(x)\right]=\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{d^{2} y}{d x^{2}}
$$

(iii) the third derivative function:

$$
f^{\prime \prime \prime}(x)=\frac{d}{d x}\left[f^{\prime \prime}(x)\right]=\frac{d^{2}}{d x^{2}}\left[f^{\prime}(x)\right]=\frac{d^{3} y}{d x^{3}}
$$

- $f^{\prime}>0$: the value of f tends to increase $f^{\prime}=0$: the value of f tends to stay constant $f^{\prime}<0$: the value of f tends to decrease

- $f^{\prime \prime}>0$: the slope of the curve tends to increase $f^{\prime \prime}<0$: the slope of the curve tends to decrease
y
y

- Objective function \Longrightarrow dependent variable
ex: Utility Maximization
Profit Maximization
Cost Minimization
- Choice variable \Longrightarrow independent variable
ex: the quantities of goods
the quantities of products
the quantities of inputs
- At a global (absolute) maximum x^{*},

$$
f\left(x^{*}\right) \geq f(x) \quad \forall x
$$

whereas at a local (relative) maximum \hat{x},

$$
f(\hat{x}) \geq f(x), \quad \forall x \in(\hat{x}-\epsilon, \hat{x}+\epsilon)
$$

where ϵ (perhaps very small) is positive.

y

- If the differentiable function f takes an (local) extreme value (maximum or minimum) at a point x^{*}, then

$$
f^{\prime}\left(x^{*}\right)=0 \quad[\text { first-order condition }] .
$$

- Note that the first-order condition, $f^{\prime}\left(x^{*}\right)=0$, is only necessary but not sufficient for x^{*} to yield an extremum value.

- If $f^{\prime}\left(x^{*}\right)=0$, then x^{*} : critical value $f\left(x^{*}\right)$: stationary value $\left(x^{*}, f\left(x^{*}\right)\right)$: stationary point
- A twice differentiable function $f(x)$ is convex (concave) if $f^{\prime \prime}(x) \geq 0\left(f^{\prime \prime}(x) \leq 0\right)$ at all points on its domain.
- A twice differentiable function $f(x)$ is strictly convex (strictly concave) if $f^{\prime \prime}(x)>0\left(f^{\prime \prime}(x)<0\right)$.
- However, $f^{\prime \prime}(x)$ might be zero at a stationary point for a strictly convex (strictly concave) function.
ex: $y=f(x)=x^{4}$ when considering $x=0$.
- Hence, $f^{\prime \prime}\left(x^{*}\right)>(<) 0$ with $f^{\prime}\left(x^{*}\right)=0$ is sufficient but not necessary for $f\left(x^{*}\right)$ to be a relative minimum (maximum). It is necessary that $f^{\prime \prime}\left(x^{*}\right) \geq(\leq) 0$ with $f^{\prime}\left(x^{*}\right)=0$.
ex: Let the $R(Q)$ and $C(Q)$ functions be

$$
\begin{aligned}
& R(Q)=1200 Q-2 Q^{2} \\
& C(Q)=Q^{3}-61.25 Q^{2}+1528.5 Q+2000
\end{aligned}
$$

Then the profit function is

$$
\pi(Q)=-Q^{3}+59.25 Q^{2}-328.5 Q-2000
$$

which has two critical values, $Q=3$ and $Q=36.5$, because

$$
\frac{d \pi}{d Q}=-3 Q^{2}+118.5 Q-328.5=-3(Q-3)(Q-36.5)
$$

But since the second derivative is

$$
\frac{d^{2} \pi}{d Q^{2}}=-6 Q+118.5 \quad \begin{cases}>0 & \text { when } Q=3 \\ <0 & \text { when } Q=36.5\end{cases}
$$

the profit-maximizing output is $Q^{*}=36.5$.

- Maclaurin Series Expansion of a Polynomial Function

$$
\begin{array}{cc}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n} & \Rightarrow f(0)=a_{0} \\
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1} & \Rightarrow f^{\prime}(0)=a_{1} \\
f^{\prime \prime}(x)=2 a_{2}+(3)(2) a_{3} x+\cdots+n(n-1) a_{n} x^{n-2} & \Rightarrow \quad f^{\prime \prime}(0)=2 a_{2} \\
\vdots \\
f^{(n)}(x)=n(n-1)(n-2) \cdots(3)(2)(1) a_{n} \quad \Rightarrow \quad f^{(n)}(0)=n!a_{n} \\
\Longrightarrow \quad f(x)=\frac{f(0)}{0!}+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}
\end{array}
$$

- Taylor Series Expansion (around $x=x_{0}$)

Let $x=x_{0}+\delta \quad \Rightarrow \quad f(x)=f\left(x_{0}+\delta\right) \equiv g(\delta)$
Hence, $f^{\prime}\left(x_{0}+\delta\right)=g^{\prime}(\delta)$ and $f^{(n)}\left(x_{0}+\delta\right)=g^{(n)}(\delta)$
$f(x)=g(\delta)=\frac{g(0)}{0!}+\frac{g^{\prime}(0)}{1!} \delta+\frac{g^{\prime \prime}(0)}{2!} \delta^{2}+\cdots+\frac{g^{(n)}(0)}{n!} \delta^{n}$
$=\frac{f\left(x_{0}\right)}{0!}+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$
$=\sum_{k=0}^{n}\left[\frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}\right]$

- Taylor's Theorem

Given an arbitrary function $f(x)$, if we know the values $f\left(x_{0}\right)$, $f^{\prime}\left(x_{0}\right), f^{\prime \prime}\left(x_{0}\right), \cdots$, etc., then $f(x)$ can be expanded around x_{0} as

$$
\begin{aligned}
f(x) & =\left[\frac{f\left(x_{0}\right)}{0!}+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}\right]+R_{n+1} \\
& =P_{n}+R_{n+1}
\end{aligned}
$$

where $R_{n+1}=\frac{f^{(n+1)}(p)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$ and $p \in\left(x, x_{0}\right)$.

- If it happens that
$R_{n+1} \rightarrow 0$ as $n \rightarrow \infty \quad$ so that $\quad P_{n} \rightarrow f(x)$ as $n \rightarrow \infty$
- A function $f(x)$ attains a relative maximum (minimum) value at x_{0} if $f(x)-f\left(x_{0}\right)$ is negative (positive) for values of x in the immediate neighborhood of x_{0}.
- Because of the continuity of the nth derivative, $f^{(n)}(p)$ will have the same sign as $f^{(n)}\left(x_{0}\right)$ does since p is very close to x_{0}.
ex: $f^{\prime}\left(x_{0}\right) \neq 0$
$f(x)-f\left(x_{0}\right)=\frac{f^{\prime}(p)}{1!}\left(x-x_{0}\right)=f^{\prime}(p)\left(x-x_{0}\right)$
$\Rightarrow f\left(x_{0}\right)$ cannot be a relative extremum.
ex: $f^{\prime}\left(x_{0}\right)=0, f^{\prime \prime}\left(x_{0}\right) \neq 0$

$$
\begin{aligned}
f(x)-f\left(x_{0}\right) & =\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}(p)}{2!}\left(x-x_{0}\right)^{2} \\
& =\frac{1}{2} f^{\prime \prime}(p)\left(x-x_{0}\right)^{2}
\end{aligned}
$$

$\Rightarrow f\left(x_{0}\right)$ is a relative maximum if $f^{\prime \prime}\left(x_{0}\right)<0$ with $f^{\prime}\left(x_{0}\right)=0$.
ex: $f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=0, f^{\prime \prime \prime}\left(x_{0}\right) \neq 0$

$$
\begin{aligned}
f(x)-f\left(x_{0}\right) & =\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{\prime \prime \prime}(p)}{3!}\left(x-x_{0}\right)^{3} \\
& =\frac{1}{6} f^{\prime \prime \prime}(p)\left(x-x_{0}\right)^{3}
\end{aligned}
$$

$\Rightarrow\left(x_{0}, f\left(x_{0}\right)\right)$ is an inflection point.

- Nth-Derivative Test

If $f^{\prime}\left(x_{0}\right)=0$ and the first nonzero derivative value at x_{0} encountered in successive derivative is N th, i.e., $f^{(N)}\left(x_{0}\right) \neq 0$, then the stationary value $f\left(x_{0}\right)$ will be

1. a relative maximum if N is even and $f^{(N)}\left(x_{0}\right)<0$.
2. a relative minimum if N is even and $f^{(N)}\left(x_{0}\right)>0$.
3. an inflection point if N is odd.
ex: $y=f(x)=x^{3}$
ex: $y=f(x)=(x-2)^{4}+3$

- Exponential Functions:

$$
y=f(x)=a^{x}, a>0, a \neq 1 .
$$

Q: What kind of number a can, as a base of the exponential function $f(x)=a^{x}$, possess the property that $f(x)=f^{\prime}(x)$?

$$
\Rightarrow f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
=\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h}
$$

$$
=a^{x} \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}
$$

$$
\boldsymbol{?}=a^{x}=f(x)
$$

$\Rightarrow \lim _{h \rightarrow 0} \frac{a^{h}-1}{h}=1$

$$
\Rightarrow \text { Let } E(m)=\left(1+\frac{1}{m}\right)^{m} \text {, then }
$$

$$
\begin{aligned}
& E(1)=2, \\
& E(2)=2.25, \\
& E(3)=2.37037 \cdots, \\
& E(4)=2.4414 \cdots, \\
& E(5)=2.48832,
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow e \equiv \lim _{m \rightarrow \infty} E(m)=\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m} \doteqdot 2.71828 \\
& \Rightarrow \frac{d}{d x} e^{x}=e^{x}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=e^{x} \\
\Rightarrow & f(x)=f^{\prime}(x)=f^{\prime \prime}(x)=\cdots=f^{(n)}(x)=e^{x} \\
\Rightarrow & f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=\cdots=f^{(n)}(0)=1 \\
\Rightarrow & e^{x}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{\prime \prime \prime}(0)}{3!} x^{3}+\cdots \\
& =1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\cdots \\
\Rightarrow & e=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots \doteqdot 2.71828
\end{aligned}
$$

- Economic Interpretation
(1) As the year-end value to which a principle of $\$ 1$ will grow if interest at the rate of 100% per annum is compounded continuously.

$$
\begin{aligned}
\Rightarrow V(1) & =\left(1+\frac{1}{1}\right)^{1}, \\
V(2) & =\left(1+\frac{1}{2}\right)^{2}, \\
V(3) & =\left(1+\frac{1}{3}\right)^{3},
\end{aligned}
$$

$$
\Rightarrow \lim _{m \rightarrow \infty} V(m)=\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}=e
$$

(2) As the t year-end value to which a principle of $\$ A$ will grow if interest at the rate of r per annum is compounded continuously.

$$
\begin{aligned}
\Rightarrow V(1) & =A(1+r)^{t}, \\
V(2) & =A\left(1+\frac{r}{2}\right)^{2 t}, \\
V(3) & =A\left(1+\frac{r}{3}\right)^{3 t},
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \lim _{m \rightarrow \infty} V(m) & =\lim _{m \rightarrow \infty} A\left(1+\frac{r}{m}\right)^{m t} \\
& =\lim _{(m / r) \rightarrow \infty} A\left(1+\frac{1}{(m / r)}\right)^{(m / r) r t} \\
& =A e^{r t}
\end{aligned}
$$

(3) r as the instantaneous rate of growth of $A e^{r t}$.

$$
\begin{aligned}
& \text { Let } V=A e^{r t}, \text { then } \frac{d V}{d t}=A r e^{r t}=r V \\
\Rightarrow & \gamma_{V}=\frac{d V / d t}{V}=r
\end{aligned}
$$

(4) Discounting and the present value.

$$
V=A e^{r t} \quad \Rightarrow A=V e^{-r t}
$$

- Logarithms:

$$
y=f(x)=\log _{a} x, a>0, a \neq 1, x>0
$$

- Rules

1. $\log _{a}(u v)=\log _{a} u+\log _{a} v \quad$ ex: $\log _{2} 6=\log _{2} 2+\log _{2} 3$
2. $\log _{a}\left(\frac{u}{v}\right)=\log _{a} u-\log _{a} v \quad$ ex: $\log _{2} 5=\log _{2} 10-\log _{2} 2$
3. $\log _{a} u^{n}=n \log _{a} u$
ex: $\log _{10} 0.001=\log _{10} 10^{-3}=-3$
4. $\log _{b} u=\left(\log _{b} a\right)\left(\log _{a} u\right)$
5. $\log _{a} u=\left(\log _{u} a\right)^{-1}$
ex: $\left(\log _{4} 3\right)\left(\log _{3} 64\right)=\log _{4} 4^{3}=3$
ex: $\log _{3} 2=\frac{1}{\log _{2} 3}$
6. $\log _{a^{k}} u^{n}=\frac{n}{k} \log _{a} u$

- Define $\log _{e} x=\ln x$ as the natural logarithm and $\log _{10} x=\log x$ as the common logarithm.
- $\frac{d}{d x} \ln x=\frac{1}{x}$

proof:

Let $f(x)=\ln x$ and $m=\frac{x}{h}$

$$
\begin{aligned}
\Rightarrow f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\ln \left(\frac{x+h}{x}\right)}{h} \\
& =\lim _{m \rightarrow \infty} \frac{\ln \left(1+\frac{1}{m}\right)}{\left(\frac{x}{m}\right)}=\frac{1}{x} \lim _{m \rightarrow \infty} \ln \left(1+\frac{1}{m}\right)^{m} \\
& =\frac{1}{x} \ln \left(\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}\right)=\frac{1}{x}
\end{aligned}
$$

ex: $y=e^{3 t}$

$$
\Rightarrow y^{\prime}=\frac{d}{d t} e^{3 t}=\left(\frac{d}{d(3 t)} e^{3 t}\right)\left(\frac{d(3 t)}{d t}\right)=3 e^{3 t}
$$

ex: $y=\ln t^{5}$

$$
\Rightarrow y^{\prime}=\left(\frac{d}{d\left(t^{5}\right)} \ln t^{5}\right)\left(\frac{d}{d t} t^{5}\right)=\frac{1}{t^{5}}\left(5 t^{4}\right)=\frac{5}{t}
$$

ex: $y=t^{3} \ln t^{2}$

$$
\Rightarrow y^{\prime}=\left(3 t^{2}\right)\left(\ln t^{2}\right)+\left(t^{3}\right)\left(\frac{2}{t}\right)=6 t^{2} \ln t+2 t^{2}
$$

- $b=e^{\ln b}$ or $b=a^{\log _{a} b}$
- $\frac{d}{d x} b^{x}=b^{x} \ln b$
- $\frac{d}{d x} \log _{b} x=\frac{1}{x \ln b}$

proof 1:

$$
\frac{d}{d x} b^{x}=\frac{d}{d x}\left(e^{\ln b}\right)^{x}=\frac{d}{d x} e^{(\ln b) x}=(\ln b) e^{(\ln b) x}=b^{x} \ln b
$$

proof 2:

$$
\frac{d}{d x} \log _{b} x=\frac{d}{d x}\left(\frac{\ln x}{\ln b}\right)=\frac{1}{x \ln b}
$$

ex: $y=12^{1-t}$

$$
\Rightarrow y^{\prime}=(-1) 12^{1-t} \ln 12
$$

ex: $y=\frac{x^{2}}{(x+3)(2 x+1)}$
$\Rightarrow \ln y=\ln x^{2}-\ln (x+3)-\ln (2 x+1)$
$\Rightarrow\left(\frac{1}{y}\right) y^{\prime}=\frac{2}{x}-\frac{1}{x+3}-\frac{2}{2 x+1}$
$\Rightarrow y^{\prime}=\frac{x^{2}}{(x+3)(2 x+1)}\left(\frac{2}{x}-\frac{1}{x+3}-\frac{2}{2 x+1}\right)$
ex: $y=4^{t} \Rightarrow \ln y=\ln 4^{t}=t \ln 4$

$$
\Rightarrow \frac{d}{d t} \ln y=\frac{1}{y}\left(\frac{d y}{d t}\right) \equiv \gamma_{y}=\ln 4
$$

ex: $y=u v \Rightarrow \ln y=\ln u+\ln v \Rightarrow \gamma_{y}=\gamma_{u}+\gamma_{v}$

$$
\begin{aligned}
y=\frac{u}{v} & \Rightarrow \ln y=\ln u-\ln v \Rightarrow \gamma_{y}=\gamma_{u}-\gamma_{v} \\
y=u+v & \Rightarrow \ln y=\ln (u+v) \\
& \Rightarrow \gamma_{y}=\frac{1}{u+v}\left(\frac{d u}{d t}+\frac{d v}{d t}\right)=\frac{u}{u+v} \gamma_{u}+\frac{v}{u+v} \gamma_{v}
\end{aligned}
$$

Multivariate Calculus

and Optimization

refer to textbook

Ch. 11 The Case of More than One Choice Variable

- Let $y=f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, where x_{i} are mutually independent. The partial derivative of y with respect to the variable x_{i} is

$$
f_{i} \equiv \frac{\partial y}{\partial x_{i}}
$$

$$
=\lim _{\Delta x_{i} \rightarrow 0} \frac{f\left(x_{1}, \ldots, x_{i}+\Delta x_{i}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right)}{\Delta x_{i}}
$$

ex: $f\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+x_{1} x_{2}+4 x_{2}^{2}$

$$
\Rightarrow f_{1}\left(x_{1}, x_{2}\right)=6 x_{1}+x_{2} \quad \text { and } \quad f_{2}\left(x_{1}, x_{2}\right)=x_{1}+8 x_{2}
$$

ex: $f(x, y)=\frac{2 x-3 y}{x+y}$

$$
\begin{aligned}
\Rightarrow f_{x}(x, y) & =\frac{2(x+y)-(2 x-3 y)}{(x+y)^{2}}=\frac{5 y}{(x+y)^{2}} \\
f_{y}(x, y) & =\frac{(-3)(x+y)-(2 x-3 y)}{(x+y)^{2}}=\frac{-5 x}{(x+y)^{2}}
\end{aligned}
$$

ex: $Q^{D}=a-b P \quad(a, b>0)$

$$
\begin{array}{rlrl}
Q^{S} & =-c+d P \quad(c, d>0) \\
\Rightarrow P^{*} & =\frac{a+c}{b+d}, \quad Q^{*}=\frac{a d-b c}{b+d} \\
\Rightarrow & \frac{\partial P^{*}}{\partial a} & =?, \quad \frac{\partial P^{*}}{\partial b}=?, \quad \frac{\partial P^{*}}{\partial c}=?, \quad \frac{\partial P^{*}}{\partial d}=? \\
\frac{\partial Q^{*}}{\partial a} & =?, \quad \frac{\partial Q^{*}}{\partial b}=?, \quad \frac{\partial Q^{*}}{\partial c}=?, \quad \frac{\partial Q^{*}}{\partial d}=?
\end{array}
$$

- $d y=\left(\frac{d y}{d x}\right) d x$
$d y$: the differential of y
$d x$: the differential of x
$d y / d x$: the derivative of $y=f(x)$

$$
\begin{aligned}
& \Rightarrow \quad \frac{(d y)}{(d x)}=\left(\frac{d y}{d x}\right) \equiv f^{\prime}(x) \\
& \text { ex: } \epsilon^{D} \equiv \frac{d Q / Q}{d P / P}=\left(\frac{d Q}{d P}\right)\left(\frac{P}{Q}\right) \\
& \quad=\frac{1}{(d P / d Q)}\left(\frac{P}{Q}\right)=\frac{1}{m} \tan \theta
\end{aligned}
$$

- Total Differentials

$$
\begin{aligned}
y=f\left(x_{1}, x_{2}\right) & \Rightarrow d y=\left(\frac{\partial y}{\partial x_{1}}\right) d x_{1}+\left(\frac{\partial y}{\partial x_{2}}\right) d x_{2} \\
& \Rightarrow \quad \frac{\partial y}{\partial x_{1}}=\left.\frac{d y}{d x_{1}}\right|_{d x_{2}=0}
\end{aligned}
$$

$$
\text { ex: } U=U\left(x_{1}, x_{2}\right)=U_{0} \quad \text { and } \quad M U_{1}=\frac{\partial U}{\partial x_{1}}, \quad M U_{2}=\frac{\partial U}{\partial x_{2}}
$$

$$
\Rightarrow d U=M U_{1} d x_{1}+M U_{2} d x_{2}=0
$$

$$
\Rightarrow \frac{d x_{2}}{d x_{1}}=-\frac{M U_{1}}{M U_{2}}=-M R S_{12}
$$

ex: $M=p_{1} x_{1}+p_{2} x_{2}+\cdots+p_{n} x_{n}$
$\Rightarrow d M=\left(p_{1} d x_{1}+x_{1} d p_{1}\right)+\left(p_{2} d x_{2}+x_{2} d p_{2}\right)+\cdots+\left(p_{n} d x_{n}+x_{n} d p_{n}\right)$
If $d p_{1}=d p_{2}=\cdots=d p_{n}=0$, then

$$
d M=p_{1} d x_{1}+p_{2} d x_{2}+\cdots+p_{n} d x_{n}
$$

(i) if $d M=0$, then $\frac{d x_{2}}{d x_{1}}=-\frac{p_{1}}{p_{2}}$
(ii) if $d M \neq 0$, then

$$
\begin{aligned}
& \frac{d M}{M}=\left(\frac{p_{1} x_{1}}{M}\right)\left(\frac{d x_{1}}{x_{1}}\right)+\left(\frac{p_{2} x_{2}}{M}\right)\left(\frac{d x_{2}}{x_{2}}\right)+\cdots+\left(\frac{p_{n} x_{n}}{M}\right)\left(\frac{d x_{n}}{x_{n}}\right) \\
& \Rightarrow S_{1} \eta_{1}+S_{2} \eta_{2}+\cdots+S_{n} \eta_{n}=1
\end{aligned}
$$

ex: $y=5 x_{1}^{2}+3 x_{2}$

$$
\Rightarrow d y=10 x_{1} d x_{1}+3 d x_{2}
$$

ex: $y=3 x_{1}^{2}+x_{1} x_{2}^{2}$

$$
\Rightarrow d y=\left(6 x_{1}+x_{2}^{2}\right) d x_{1}+2 x_{1} x_{2} d x_{2}
$$

ex: $y=\frac{x_{1}+x_{2}}{2 x_{1}^{2}}$

$$
\Rightarrow d y=\left[\frac{2 x_{1}^{2}-\left(x_{1}+x_{2}\right)\left(4 x_{1}\right)}{4 x_{1}^{4}}\right] d x_{1}+\left(\frac{1}{2 x_{1}^{2}}\right) d x_{2}
$$

- Total Derivatives

Case 1:

$$
\begin{aligned}
y & =f(x, w) \\
& =f(g(w), w)
\end{aligned}
$$

$\Rightarrow d y=f_{x} d x+f_{w} d w=f_{x} g_{w} d w+f_{w} d w$
$\Rightarrow \frac{d y}{d w}=\left(\frac{\partial y}{\partial x}\right)\left(\frac{d x}{d w}\right)+\left(\frac{\partial y}{\partial w}\right)$

Case 2:

$$
\begin{aligned}
y & =f\left(x_{1}, x_{2}, w\right) \\
& =f(g(w), h(w), w)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow d y & =f_{1} d x_{1}+f_{2} d x_{2}+f_{w} d w \\
& =f_{1} g_{w} d w+f_{2} h_{w} d w+f_{w} d w \\
\Rightarrow \frac{d y}{d w} & =\left(\frac{\partial y}{\partial x_{1}}\right)\left(\frac{d x_{1}}{d w}\right)+\left(\frac{\partial y}{\partial x_{2}}\right)\left(\frac{d x_{2}}{d w}\right)+\left(\frac{\partial y}{\partial w}\right)
\end{aligned}
$$

Case 3:

$$
\begin{aligned}
y & =f\left(x_{1}, x_{2}, u, v\right) \\
& =f(g(u, v), h(u, v), u, v)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow d y & =f_{1} d x_{1}+f_{2} d x_{2}+f_{u} d u+f_{v} d v \\
& =f_{1}\left(g_{u} d u+g_{v} d v\right)+f_{2}\left(h_{u} d u+h_{v} d v\right)+f_{u} d u+f_{v} d v \\
& =\left(f_{1} g_{u}+f_{2} h_{u}+f_{u}\right) d u+\left(f_{1} g_{v}+f_{2} h_{v}+f_{v}\right) d v \\
& =\left(\frac{\S y}{\S u}\right) d u+\left(\frac{\S y}{\S v}\right) d v
\end{aligned}
$$

where $\left.\frac{\S y}{\S u} \equiv \frac{d y}{d u}\right|_{d v=0}=\left(\frac{\partial y}{\partial x_{1}}\right)\left(\frac{\partial x_{1}}{\partial u}\right)+\left(\frac{\partial y}{\partial x_{2}}\right)\left(\frac{\partial x_{2}}{\partial u}\right)+\left(\frac{\partial y}{\partial u}\right)$
is the partial total derivative of y with respect to u.

- The Differential Version of Optimization Conditions
$y=f(x)$
$\Rightarrow d y=f^{\prime}(x) d x=0$
if and only if $\quad f^{\prime}(x)=0$
[1st-order condition]

$$
\begin{aligned}
\Rightarrow d^{2} y=d(d y) & =d\left(f^{\prime}(x) d x\right) \\
& =\left(d f^{\prime}(x)\right) d x=\left(f^{\prime \prime}(x) d x\right) d x \\
& =f^{\prime \prime}(x)(d x)^{2}=f^{\prime \prime}(x) d x^{2}>(<) 0
\end{aligned}
$$

if and only if $\quad f^{\prime \prime}(x)>(<) 0$
[2nd-order condition]

- Two Variables Case

$$
\begin{array}{rlr}
& y=f\left(x_{1}, x_{2}\right) & \\
\Rightarrow & d y=f_{1} d x_{1}+f_{2} d x_{2}=0 & \text { for arbitrary values of } d x_{1} \text { and } d x_{2} \\
& \text { iff } f_{1}=f_{2}=0 & \text { [1st-order condition] }
\end{array}
$$

ex: $y=f\left(x_{1}, x_{2}\right)=x_{1}^{3}+5 x_{1} x_{2}-x_{2}^{2}$

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+5 x_{2} \stackrel{\text { set }}{=} 0 \\
& f_{2}\left(x_{1}, x_{2}\right)=5 x_{1}-2 x_{2} \stackrel{\text { set }}{=} 0 \\
\Rightarrow & \left(x_{1}, x_{2}\right)=(0,0) \quad \text { or } \quad(-25 / 6,-125 / 12)
\end{aligned}
$$

- 2nd-Order Partial Derivatives

Given $y=f\left(x_{1}, x_{2}\right)$ is a twice differentiable function, then

$$
\begin{aligned}
& f_{11} \equiv \frac{\partial}{\partial x_{1}} f_{1}\left(x_{1}, x_{2}\right)=\frac{\partial}{\partial x_{1}}\left(\frac{\partial y}{\partial x_{1}}\right) \\
& f_{12} \equiv \frac{\partial}{\partial x_{2}} f_{1}\left(x_{1}, x_{2}\right)=\frac{\partial}{\partial x_{2}}\left(\frac{\partial y}{\partial x_{1}}\right)
\end{aligned}
$$

- 2nd-Order Condition

$$
\begin{aligned}
& d^{2} y \equiv d(d y)=\left(\frac{\partial}{\partial x_{1}} d y\right) d x_{1}+\left(\frac{\partial}{\partial x_{2}} d y\right) d x_{2} \\
& =\left[\frac{\partial}{\partial x_{1}}\left(f_{1} d x_{1}+f_{2} d x_{2}\right)\right] d x_{1}+\left[\frac{\partial}{\partial x_{2}}\left(f_{1} d x_{1}+f_{2} d x_{2}\right)\right] d x_{2} \\
& =\left(f_{11} d x_{1}+f_{21} d x_{2}\right) d x_{1}+\left(f_{12} d x_{1}+f_{22} d x_{2}\right) d x_{2} \\
& =f_{11}\left(d x_{1}\right)^{2}+f_{21}\left(d x_{2}\right)\left(d x_{1}\right)+f_{12}\left(d x_{1}\right)\left(d x_{2}\right)+f_{22}\left(d x_{2}\right)^{2} \\
& =\left[\begin{array}{ll}
d x_{1} & d x_{2}
\end{array}\right]\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2}
\end{array}\right] \text { (examples) } \\
& =f_{11} d x_{1}^{2}+2 f_{12} d x_{1} d x_{2}+f_{22} d x_{2}^{2} \quad \text { [Young's Theorem] }
\end{aligned}
$$

ex: $q=5 u^{2}+3 u v+2 v^{2}$
$\Rightarrow q=\left[\begin{array}{ll}u & v\end{array}\right]\left[\begin{array}{cc}5 & 3 / 2 \\ 3 / 2 & 2\end{array}\right]\left[\begin{array}{l}u \\ v\end{array}\right]$
ex: $z=-2 x^{2}+2 x y-y^{2}$
$\Rightarrow z=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{cc}-2 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

- Young's Theorem

For a function

$$
y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

with continuous first- and second-order partial derivatives, the order of differentiation in computing the cross-partials is irrelevant. That is, $f_{i j}=f_{j i}$ for any pair i, j.

$$
f_{i j} \equiv \frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial x_{j}}\right) \equiv f_{j i}
$$

$$
\begin{aligned}
d^{2} y & =f_{11} d x_{1}^{2}+2 f_{12} d x_{1} d x_{2}+f_{22} d x_{2}^{2} \\
& =f_{11}\left(d x_{1}+\frac{f_{12}}{f_{11}} d x_{2}\right)^{2}+\frac{f_{11} f_{22}-f_{12}^{2}}{f_{11}}\left(d x_{2}\right)^{2}
\end{aligned}
$$

(1) $d^{2} y>0$ iff $f_{11}>0, f_{22}>0, f_{11} f_{22}-f_{12}^{2}>0$
(2) $d^{2} y<0$ iff $f_{11}<0, f_{22}<0, f_{11} f_{22}-f_{12}^{2}>0$
(3) If $f_{11} f_{22}-f_{12}^{2}<0$, then the point is a saddle point or an inflection point.

- If the function $y=f\left(x_{1}, x_{2}\right)$ defined on \mathbb{R}^{2} is twice continuously differentiable and

$$
d^{2} y=f_{11} d x_{1}^{2}+2 f_{12} d x_{1} d x_{2}+f_{22} d x_{2}^{2}>(<) 0
$$

whenever at least one of $d x_{1}$ or $d x_{2}$ is nonzero, then $y=f\left(x_{1}, x_{2}\right)$ is a strictly convex (strictly concave) function.

- If the function $y=f\left(x_{1}, x_{2}\right)$ defined on \mathbb{R}^{2} is twice continuously differentiable, then it is convex (concave) if and only if

$$
d^{2} y=f_{11} d x_{1}^{2}+2 f_{12} d x_{1} d x_{2}+f_{22} d x_{2}^{2} \geq(\leq) 0
$$

- Three Variables Case

$$
y=f\left(x_{1}, x_{2}, x_{3}\right)
$$

(1) $d y=f_{1} d x_{1}+f_{2} d x_{2}+f_{3} d x_{3}$
$\Rightarrow d y=0 \quad$ iff $\quad f_{1}=f_{2}=f_{3}=0$

[1st-order condition]

(2) $d^{2} y=\left(f_{11} d x_{1}+f_{12} d x_{2}+f_{13} d x_{3}\right) d x_{1}$

$$
\begin{aligned}
& +\left(f_{21} d x_{1}+f_{22} d x_{2}+f_{23} d x_{3}\right) d x_{2} \\
& \quad+\left(f_{31} d x_{1}+f_{32} d x_{2}+f_{33} d x_{3}\right) d x_{3}
\end{aligned}
$$

$$
=\left[\begin{array}{lll}
d x_{1} & d x_{2} & d x_{3}
\end{array}\right]\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right]
$$

- Let H be the Hessian Matrix associated with a twice continuously differentiable function $y=f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{n}$.

$$
H=\left[\begin{array}{cccc}
f_{11} & f_{12} & \cdots & f_{1 n} \\
f_{21} & f_{22} & \cdots & f_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
f_{n 1} & f_{n 2} & \cdots & f_{n n}
\end{array}\right]
$$

- Denote $\left|H_{1}\right|,\left|H_{2}\right|, \cdots,\left|H_{n}\right|$ as the leading principal minors:

$$
\left|H_{1}\right|=\left|f_{11}\right|,\left|H_{2}\right|=\left|\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right|,\left|H_{3}\right|=\left|\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right|
$$

$$
\begin{aligned}
d^{2} y= & \sum_{i=1}^{3} \sum_{j=1}^{3}\left(f_{i j} d x_{i} d x_{j}\right) \\
= & f_{11}\left(d x_{1}+\frac{f_{12}}{f_{11}} d x_{2}+\frac{f_{13}}{f_{11}} d x_{3}\right)^{2} \\
& \quad+\left(f_{22}-\frac{f_{12}^{2}}{f_{11}}\right)\left(d x_{2}\right)^{2}+\left(f_{33}-\frac{f_{13}^{2}}{f_{11}}\right)\left(d x_{3}\right)^{2} \\
& \quad+2\left(\frac{f_{11} f_{23}-f_{12} f_{13}}{f_{11}}\right)\left(d x_{2}\right)\left(d x_{3}\right) \\
=\left|H_{1}\right|\left(d x_{1}+\right. & \left.\frac{f_{12}}{f_{11}} d x_{2}+\frac{f_{13}}{f_{11}} d x_{3}\right)^{2} \\
& \quad+\frac{\left|H_{2}\right|}{\left|H_{1}\right|}\left(d x_{2}+\frac{f_{11} f_{23}-f_{12} f_{13}}{f_{11} f_{22}-f_{12}^{2}} d x_{3}\right)^{2}+\frac{\left|H_{3}\right|}{\left|H_{2}\right|}\left(d x_{3}\right)^{2}
\end{aligned}
$$

- $d^{2} y>0$ iff $\left|H_{1}\right|>0,\left|H_{2}\right|>0,\left|H_{3}\right|>0$
- $d^{2} y<0$ iff $\left|H_{1}\right|<0,\left|H_{2}\right|>0,\left|H_{3}\right|<0$
- n-Variables Case
(1) $d^{2} y>0$ iff $\left|H_{1}\right|>0,\left|H_{2}\right|>0,\left|H_{3}\right|>0, \cdots,\left|H_{n}\right|>0$
and H is said to be a positive definite matrix.
(2) $d^{2} y<0$ iff $\left|H_{1}\right|<0,\left|H_{2}\right|>0,\left|H_{3}\right|<0,\left|H_{4}\right|>0, \cdots$ and H is said to be a negative definite matrix.
(3) $d^{2} y \geq 0$ iff $\left|H_{1}\right| \geq 0,\left|H_{2}\right| \geq 0,\left|H_{3}\right| \geq 0, \cdots,\left|H_{n}\right| \geq 0$ and H is said to be a positive semidefinite matrix.
(4) $d^{2} y \leq 0 \quad$ iff $\quad\left|H_{1}\right| \leq 0,\left|H_{2}\right| \geq 0,\left|H_{3}\right| \leq 0,\left|H_{4}\right| \geq 0, \cdots$ and H is said to be a negative semidefinite matrix.
ex: $y=f\left(x_{1}, x_{2}, x_{3}\right)=3 x_{1}^{2}-2 x_{1} x_{2}+4 x_{1} x_{3}+5 x_{2}^{2}+4 x_{3}^{2}-2 x_{2} x_{3}$

$$
\Rightarrow f_{1}\left(x_{1}, x_{2}, x_{3}\right)=6 x_{1}-2 x_{2}+4 x_{3}
$$

$$
f_{2}\left(x_{1}, x_{2}, x_{3}\right)=-2 x_{1}+10 x_{2}-2 x_{3} \quad \Rightarrow \quad H=\left[\begin{array}{ccc}
6 & -2 & 4 \\
-2 & 10 & -2 \\
4 & -2 & 8
\end{array}\right]
$$

$$
f_{3}\left(x_{1}, x_{2}, x_{3}\right)=4 x_{1}+8 x_{3}-2 x_{2}
$$

$$
\Rightarrow\left|H_{1}\right|=6>0, \quad\left|H_{2}\right|=\left|\begin{array}{cc}
6 & -2 \\
-2 & 10
\end{array}\right|=56>0
$$

$$
\left|H_{3}\right|=\left|\begin{array}{ccc}
6 & -2 & 4 \\
-2 & 10 & -2 \\
4 & -2 & 8
\end{array}\right|=296>0
$$

$\Rightarrow H$ is a positive definite matrix.
$\mathbf{e x :} y=f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}{ }^{2}+3 x_{2}{ }^{2}-x_{3}{ }^{2}+6 x_{1} x_{2}-8 x_{1} x_{3}-2 x_{2} x_{3}$
$\Rightarrow H=\left[\begin{array}{ccc}4 & 6 & -8 \\ 6 & 6 & -2 \\ -8 & -2 & -2\end{array}\right]$
$\Rightarrow\left|H_{1}\right|=4>0, \quad\left|H_{2}\right|=\left|\begin{array}{ll}4 & 6 \\ 6 & 6\end{array}\right|=-12<0$,
$\Rightarrow H$ is neither positive nor negative definite.
ex: Suppose that a monopolistic firm sells a single product in three separate markets and the demands facing this firm are as follows:

$$
P_{1}=63-4 Q_{1}, \quad P_{2}=105-5 Q_{2}, \quad P_{3}=75-6 Q_{3}
$$

and that the total-cost function is

$$
C=20+15 Q
$$

Please solve the profit maximization problem for this firm.

- Note that $R_{i}=P_{i} Q_{i}$, hence

$$
\begin{aligned}
\frac{d}{d Q_{i}} R_{i} & =P_{i}+\left(\frac{d P_{i}}{d Q_{i}}\right) Q_{i} \\
& =P_{i}\left[1+\left(\frac{d Q_{i}}{d P_{i}} \frac{P_{i}}{Q_{i}}\right)^{-1}\right]=P_{i}\left(1-\frac{1}{\left|\epsilon_{i}\right|}\right)
\end{aligned}
$$

$$
\begin{aligned}
\pi= & R_{1}+R_{2}+R_{3}-C \\
= & \left(63-4 Q_{1}\right) Q_{1}+\left(105-5 Q_{2}\right) Q_{2}+\left(75-6 Q_{3}\right) Q_{3} \\
& -\left[20+15\left(Q_{1}+Q_{2}+Q_{3}\right)\right] \\
= & -20+48 Q_{1}-4 Q_{1}^{2}+90 Q_{2}-5{Q_{2}}^{2}+60 Q_{3}-6 Q_{3}{ }^{2} \\
\Rightarrow \pi_{1}= & 48-8 Q_{1} \stackrel{\text { set }}{=} 0 \\
\pi_{2}= & 90-10 Q_{2} \stackrel{\text { set }}{=} 0 \Rightarrow\left(\overline{Q_{1}}, \overline{Q_{2}}, \overline{Q_{3}}\right)=(6,9,5) \\
\pi_{3}= & 60-12 Q_{3} \stackrel{\text { set }}{=} 0 \\
\Rightarrow H= & {\left[\begin{array}{ccc}
-8 & 0 & 0 \\
0 & -10 & 0 \\
0 & 0 & -12
\end{array}\right] \text { is negative definite. } }
\end{aligned}
$$

Thus, the equilibrium profit is a maximum.

- Eigenvalue and Eigenvector

Given an $n \times n$ matrix A, we can find a scalar λ and an $n \times 1$ vector $\mathbf{x} \neq \mathbf{0}_{n \times 1}$ such that

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

where λ is an eigenvalue (characteristic root) of A and \mathbf{x} is an eigenvector (characteristic vector) of A.

- $A \mathbf{x}=\lambda \mathbf{x} \quad \Rightarrow \quad(A-\lambda I) \mathbf{x}=\mathbf{0}_{n \times 1}$
- If x is required not to be a trivial solution (i.e., $\mathrm{x} \neq 0$),
$\Rightarrow|A-\lambda I|=0 \quad$ i.e., $(A-\lambda I)$ is singular.
ex: $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$
$\Rightarrow|A-\lambda I|=\left|\begin{array}{cc}4-\lambda & 1 \\ 2 & 3-\lambda\end{array}\right|=\lambda^{2}-7 \lambda+10=0$
$\Rightarrow \lambda_{1}=2$ and $\lambda_{2}=5$
$\Rightarrow\left[\begin{array}{cc}4-2 & 1 \\ 2 & 3-2\end{array}\right] \mathbf{x}_{1}=\left[\begin{array}{ll}2 & 1 \\ 2 & 1\end{array}\right]\left[\begin{array}{l}a_{1} \\ b_{1}\end{array}\right]=\mathbf{0}$
and $\left[\begin{array}{cc}4-5 & 1 \\ 2 & 3-5\end{array}\right] \mathbf{x}_{2}=\left[\begin{array}{cc}-1 & 1 \\ 2 & -2\end{array}\right]\left[\begin{array}{l}a_{2} \\ b_{2}\end{array}\right]=\mathbf{0}$
\Rightarrow By normalization (Let $\|\mathbf{x}\|=\sqrt{\mathbf{x}^{T} \mathbf{x}}=\sqrt{a^{2}+b^{2}}=1$)

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
1 / \sqrt{5} \\
-2 / \sqrt{5}
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{2}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \quad \text { ex: }\left[\begin{array}{cc}
2 & 4 \\
1 & 2
\end{array}\right]
$$

ex: $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right] \Rightarrow|A-\lambda I|=\left|\begin{array}{ccc}2-\lambda & 1 & 1 \\ 1 & 2-\lambda & 1 \\ 1 & 1 & 2-\lambda\end{array}\right|$

$$
=-\lambda^{3}+6 \lambda^{2}-9 \lambda+4=0
$$

$\Rightarrow \lambda_{1}=1, \quad \lambda_{2}=1, \quad \lambda_{3}=4$
(i) $\left[\begin{array}{ccc}2-1 & 1 & 1 \\ 1 & 2-1 & 1 \\ 1 & 1 & 2-1\end{array}\right] \mathbf{x}_{1}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{l}a_{1} \\ b_{1} \\ c_{1}\end{array}\right]=\mathbf{0}$
$\Rightarrow a_{1}+b_{1}+c_{1}=0$ and (by normalization) $a_{1}^{2}+b_{1}^{2}+c_{1}^{2}=1$
$\Rightarrow \mathbf{x}_{1}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2} \\ 0\end{array}\right] \quad$ and $\quad \mathbf{x}_{2}=\left[\begin{array}{c}1 / \sqrt{6} \\ 1 / \sqrt{6} \\ -2 / \sqrt{6}\end{array}\right]$
(ii) $\left[\begin{array}{ccc}2-4 & 1 & 1 \\ 1 & 2-4 & 1 \\ 1 & 1 & 2-4\end{array}\right] \mathbf{x}_{3}=\left[\begin{array}{ccc}-2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2\end{array}\right]\left[\begin{array}{l}a_{3} \\ b_{3} \\ c_{3}\end{array}\right]=\mathbf{0}$
$\Rightarrow a_{3}=b_{3}=c_{3}$ and (by normalization) $a_{3}{ }^{2}+b_{3}{ }^{2}+c_{3}{ }^{2}=1$
$\Rightarrow \mathbf{x}_{3}=\left[\begin{array}{l}1 / \sqrt{3} \\ 1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]$
ex: $\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right]$

- $|A-\lambda I|$
$=\left|\begin{array}{cccc}a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda\end{array}\right|$
(is an n th-degree polynomial in λ)
$=(-1)^{n}\left[\lambda^{n}-\alpha_{1} \lambda^{n-1}+\alpha_{2} \lambda^{n-2}+\cdots+(-1)^{n-1} \alpha_{n-1} \lambda+(-1)^{n} \alpha_{n}\right]$
(and thus has n solutions $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$)
$=(-1)^{n}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \cdots\left(\lambda-\lambda_{n}\right)$
- Note that α_{1} denotes the sum and α_{n} the product of all eigenvalues.
- If $\lambda=0$, then $|A|=\alpha_{n}=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$
(1) The determinant of A equals the product of all its eigenvalues.
(2) A is nonsingular if and only if no eigenvalue equals zero.
- $\alpha_{1}=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}$

$$
=a_{11}+a_{22}+\cdots+a_{n n} \equiv \operatorname{trace}(A)
$$

(3) The sum of all the eigenvalues of A equals the trace of A.

$$
\begin{array}{ll}
\text { ex: }\left[\begin{array}{cc}
4 & 1 \\
2 & 3
\end{array}\right] & \text { ex: }\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] \\
\Rightarrow \lambda_{1}=2 \text { and } \lambda_{2}=5 & \Rightarrow \lambda_{1}=1, \quad \lambda_{2}=1, \quad \lambda_{3}=4
\end{array}
$$

- $|A-\lambda I|=\left|(A-\lambda I)^{T}\right|=\left|A^{T}-\lambda I\right|$
(4) A^{T} has the same eigenvalues as A 's.
- $|A-\lambda I|=k^{-n}|k(A-\lambda I)|=k^{-n}|k A-(k \lambda) I|$
(5) The eigenvalues of $k A$ equals k-folds the eigenvalues of A.
- If A^{-1} exists, then $|A-\lambda I|=\left|A-\lambda A A^{-1}\right|$

$$
=\left|(-\lambda A)\left(-\frac{1}{\lambda} I+A^{-1}\right)\right|
$$

$$
=(-\lambda)^{n}|A|\left|A^{-1}-\frac{1}{\lambda} I\right|
$$

(6) The eigenvalues of A^{-1} are the reciprocal of the eigenvalues of A.

- Theorem

If A is a symmetric matrix with all real elements, then the n eigenvalues are all real numbers.

- Theorem (important!!)

For a real symmetric matrix A,

$$
\begin{array}{ll}
\mathbf{x}_{i}^{T} \mathbf{x}_{i}=1 \text { and } & \mathbf{x}_{i}^{T} \mathbf{x}_{j}=0, \quad \forall i \neq j \\
\text { (normalization) } & \text { (orthogonal) }
\end{array}
$$

$\Rightarrow\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{n}\right)$ are said to be a set of orthonormal vectors.
Proof $\quad \mathbf{x}_{i}^{T} \lambda_{j} \mathbf{x}_{j}=\mathbf{x}_{i}^{T} A \mathbf{x}_{j}=\left(\mathbf{x}_{i}^{T} A \mathbf{x}_{j}\right)^{T}$

$$
=\mathbf{x}_{j}^{T} A^{T}\left(\mathbf{x}_{i}^{T}\right)^{T}=\mathbf{x}_{j}^{T} A \mathbf{x}_{i}=\mathbf{x}_{j}^{T} \lambda_{i} \mathbf{x}_{i}
$$

$\Rightarrow \lambda_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)=\lambda_{i}\left(\mathbf{x}_{j}{ }^{T} \mathbf{x}_{i}\right) \quad$ or $\quad\left(\lambda_{j}-\lambda_{i}\right)\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)=0$
\Rightarrow If $\lambda_{j} \neq \lambda_{i}$, then $\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}=0$.
If $\lambda_{j}=\lambda_{i}$, then we can find \mathbf{x}_{i} and \mathbf{x}_{j} such that $\mathbf{x}_{i}^{T} \mathbf{x}_{j}=0$.

$$
\begin{aligned}
& \text { - } d^{2} q=\left[\begin{array}{lll}
d x_{1} & \cdots & d x_{n}
\end{array}\right]\left[\begin{array}{ccc}
f_{11} & \cdots & f_{1 n} \\
\vdots & \ddots & \vdots \\
f_{n 1} & \cdots & f_{n n}
\end{array}\right]\left[\begin{array}{c}
d x_{1} \\
\vdots \\
d x_{n}
\end{array}\right]=\mathbf{u}^{T} H \mathbf{u} \\
& \text { Let } B=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{n} \\
\mid & \mid & \mid & \mid
\end{array}\right]_{n \times n}
\end{aligned}
$$

$\Rightarrow B$ is nonsingular (WHY?) and hence B^{-1} exists

$$
\text { Let } \mathbf{y}=B^{-1} \mathbf{u}(\text { or } \mathbf{u}=B \mathbf{y})
$$

$$
\left.\begin{array}{rl}
\Rightarrow d^{2} q= & \mathbf{u}^{T} H \mathbf{u}
\end{array}=(B \mathbf{y})^{T} H(B \mathbf{y})=\mathbf{y}^{T}\left(B^{T} H B\right) \mathbf{y}\right)\left[\begin{array}{ccc}
- & \mathbf{x}_{1}^{T} & - \\
- & \mathbf{x}_{2}{ }^{T} & - \\
- & \vdots & - \\
- & \mathbf{x}_{n}{ }^{T} & -
\end{array}\right]\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\lambda_{1} \mathbf{x}_{1} & \lambda_{2} \mathbf{x}_{2} & \cdots & \lambda_{n} \mathbf{x}_{n} \\
\mid & & \mid & \mid
\end{array}\right] \mathbf{y} .
$$

- Conclusions

1. H is positive definite if and only if $\lambda_{i}>0 \forall i$
2. H is negative definite if and only if $\lambda_{i}<0 \quad \forall i$
3. H is positive semidefinite if and only if $\lambda_{i} \geq 0 \quad \forall i$
4. H is negative semidefinite if and only if $\lambda_{i} \leq 0 \quad \forall i$
5. H is indefinite if and only if some λs are positive while others are negative.
ex: Find the extreme value(s) of $q=-1.5 x^{2}+3 x z+2 y-y^{2}-3 z^{2}$ and determine whether they are maxima or minima with the eigenvalue test.

$$
\begin{aligned}
& \Rightarrow q_{x}=-3 x+3 z \underset{\text { set }}{=} 0 \\
& q_{y}=2-2 y \underset{\text { set }}{=0} \quad \Rightarrow \quad(\bar{x}, \bar{y}, \bar{z})=(0,1,0) \\
& q_{z}=3 x-6 z \underset{\text { set }}{=} 0 \\
& \Rightarrow H=\left[\begin{array}{ccc}
-3 & 0 & 3 \\
0 & -2 & 0 \\
3 & 0 & -6
\end{array}\right] \Rightarrow\left|\begin{array}{ccc}
-3-\lambda & 0 & 3 \\
0 & -2-\lambda & 0 \\
3 & 0 & -6-\lambda
\end{array}\right| \\
& =-(\lambda+2)\left(\lambda^{2}+9 \lambda+9\right)=0 \\
& \Rightarrow \quad \lambda_{1}=-2, \quad \lambda_{2}=\frac{-9+3 \sqrt{5}}{2}, \quad \lambda_{3}=\frac{-9-3 \sqrt{5}}{2}
\end{aligned}
$$

Q: $P=P(M)$?
Q: If yes, what will $\frac{d P}{d M}$ be?
ex: $y=f(x)=2 x^{2}$
$\Rightarrow F(y, x)=y-2 x^{2}=0$
ex: $y=f\left(x_{1}, x_{2}\right)=\frac{x_{1}}{x_{1}+x_{2}^{2}}$
$\Rightarrow F\left(y, x_{1}, x_{2}\right)=y\left(x_{1}+x_{2}^{2}\right)-x_{1}=0$
Q: Does there exist a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ (i.e., $y=f(\mathbf{x})$, $\mathrm{x} \in \mathbb{R}^{m}$) corresponding to the relationship defined by $F: \mathbb{R}^{m+1} \rightarrow \mathbb{R}$ (i.e., $F(y, \mathbf{x})=0$)?

- Implicit Function Theorem

If $(1) F: \mathbb{R}^{m+1} \rightarrow \mathbb{R}$,
(2) all the first partial derivatives of F are continuous,
(3) $\frac{\partial F(y, \mathbf{x})}{\partial y} \neq 0$, at the point $(\bar{y}, \overline{\mathbf{x}})$ satisfying $F(y, \mathbf{x})=0$,
then there exist $N_{\epsilon_{1}}(\overline{\mathbf{x}})$ and $N_{\epsilon_{2}}(\bar{y})$
and a function $f: N_{\epsilon_{1}}(\overline{\mathbf{x}}) \rightarrow N_{\epsilon_{2}}(\bar{y})$ satisfying

$$
F(f(\mathbf{x}), \mathbf{x})=0, \quad \forall \mathbf{x} \in N_{\epsilon_{1}}(\overline{\mathbf{x}})
$$

Also, f and $f_{i}, i=1 \sim m$ are continuous.
ex: $F(y, x)=x^{2}+y^{2}-1=0$
$\Rightarrow F_{y}=2 y, \quad F_{x}=2 x \quad$ are continuous
$\Rightarrow F_{y} \neq 0$ except when $y=0$

$$
\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}=-\frac{x}{y}
$$

$$
\begin{aligned}
& \text { ex: } U=U\left(x_{1}, x_{2}\right)=U_{0} \\
& \Rightarrow U\left(x_{1}, f\left(x_{1}\right)\right)=U_{0}, \quad \forall x_{1} \in N_{\epsilon}\left(\overline{x_{1}}\right) \\
& \Rightarrow U_{1}\left(x_{1}, f\left(x_{1}\right)\right) d x_{1}+U_{2}\left(x_{1}, f\left(x_{1}\right)\right) f^{\prime}\left(x_{1}\right) d x_{1}=0 \\
& \Rightarrow f^{\prime}\left(x_{1}\right)=-\frac{U_{1}\left(x_{1}, f\left(x_{1}\right)\right)}{U_{2}\left(x_{1}, f\left(x_{1}\right)\right)} \\
& =-M R S_{12} .
\end{aligned}
$$

- Note that the implicit function theorem is sufficient but not necessary.

$$
\text { ex: } \begin{aligned}
& F(y, x)=(x-y)^{3}=0 \\
\Rightarrow & F_{x}=3 x^{2}-6 x y+3 y^{2}
\end{aligned}
$$

$$
F_{y}=-3 x^{2}+6 x y-3 y^{2}
$$

$$
\Rightarrow F_{y}(0,0)=0
$$

- Implicit Function Rule

$$
\begin{aligned}
& \quad F(y, \mathbf{x})=0 \quad \text { with } \quad F_{y} \neq 0 \\
& \Rightarrow \\
& \text { and } \\
& \quad F_{y} d y=F_{1} d x_{1}+F_{2} d x_{2} d x_{1}+\cdots+f_{2} d x_{2}+\cdots+f_{m} d x_{m} \quad[\because y=f(\mathbf{x})] \\
& \Rightarrow \\
& \left(F_{y} f_{1}+F_{1}\right) d x_{1}+\left(F_{y} f_{2}+F_{2}\right) d x_{2}+\cdots+\left(F_{y} f_{m}+F_{m}\right) d x_{m}=0 \\
& \Rightarrow \\
& F_{y} f_{i}+F_{i}=0, \quad \forall i \\
& \Rightarrow \\
& f_{i} \equiv \frac{\partial y}{\partial x_{i}}=-\frac{F_{i}}{F_{y}}, \quad \forall i
\end{aligned}
$$

ex: $Z(P, M)=D(P, M)-S(P)=0$

$$
\begin{aligned}
& \Rightarrow \frac{\partial Z(P, M)}{\partial M}=\frac{\partial D(P, M)}{\partial M}>0 \\
& \quad \frac{\partial Z(P, M)}{\partial P}=\frac{\partial D(P, M)}{\partial P}-\frac{d S(P)}{d P}<0 \\
& \Rightarrow P=P(M)
\end{aligned}
$$

$$
\frac{d P}{d M}=-\frac{\partial Z / \partial M}{\partial Z / \partial P}>0 \quad \text { and } \quad \frac{d Q}{d M}=\left(\frac{d S}{d P}\right)\left(\frac{d P}{d M}\right)>0
$$

ex: $x^{2}+y^{2}+z^{2}=1$

- Implicit Function Theorem (Extension)

Given $F^{i}(\mathbf{y}, \mathbf{x})=0, i=1 \sim n, \mathbf{y} \in \mathbb{R}^{n}, \mathbf{x} \in \mathbb{R}^{m}$. If
(1) function $F^{1}, F^{2}, \cdots, F^{n}$ all have continuous first partial derivatives with respect to all the \mathbf{y} and \mathbf{x} variables.
(2) at the point (\mathbf{y}, \mathbf{x}) satisfying $F^{i}(\mathbf{y}, \mathbf{x})=0, i=1 \sim n$,

$$
|J| \equiv\left|\frac{\partial\left(F^{1}, F^{2}, \cdots, F^{n}\right)}{\partial\left(y_{1}, y_{2}, \cdots, y_{n}\right)}\right|=\left|\begin{array}{cccc}
\frac{\partial F^{1}}{\partial y_{1}} & \frac{\partial F^{1}}{\partial y_{2}} & \cdots & \frac{\partial F^{1}}{\partial y_{n}} \\
\frac{\partial F^{2}}{\partial y_{1}} & \frac{\partial F^{2}}{\partial y_{2}} & \cdots & \frac{\partial F^{2}}{\partial y_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial F^{n}}{\partial y_{1}} & \frac{\partial F^{n}}{\partial y_{2}} & \cdots & \frac{\partial F^{n}}{\partial y_{n}}
\end{array}\right| \neq 0
$$

then there exist an m-dimensional neighborhood $N_{\epsilon}(\overline{\mathbf{x}})$ in which all $y_{j}, j=1 \sim n$, are functions of \mathbf{x}.
ex: Given $x^{2}+y^{2}+z^{2}=3$ and $x+2 y+3 z=0$, are x and y defined as functions of z around the point
$(x=1, y=1, z=-1) ?$
$\Rightarrow F^{1}(x, y, z)=x^{2}+y^{2}+z^{2}-3=0$
$F^{2}(x, y, z)=x+2 y+3 z=0$
$\Rightarrow|J|=\left|\begin{array}{ll}\frac{\partial F^{1}}{\partial x} & \frac{\partial F^{1}}{\partial y} \\ \frac{\partial F^{2}}{\partial x} & \frac{\partial F^{2}}{\partial y}\end{array}\right|=\left|\begin{array}{cc}2 x & 2 y \\ 1 & 2\end{array}\right|=4 x-2 y$
which equals 2 at $(x=1, y=1, z=-1)$
\Rightarrow Thus, $x=x(z)$ and $y=y(z)$ around $(1,1,-1)$

$$
\text { ex: } \begin{aligned}
& Y=C+I_{0}+G_{0} \\
& C=\alpha+\beta(Y-T) \\
& T=\gamma+\delta Y \\
\Rightarrow & F^{1}\left(Y, C, T, I_{0}, G_{0}, \alpha, \beta, \gamma, \delta\right)=Y-C-I_{0}-G_{0}=0 \\
& F^{2}\left(Y, C, T, I_{0}, G_{0}, \alpha, \beta, \gamma, \delta\right)=C-\alpha-\beta(Y-T)=0 \\
& F^{3}\left(Y, C, T, I_{0}, G_{0}, \alpha, \beta, \gamma, \delta\right)=T-\gamma-\delta Y=0 \\
& \left|\begin{array}{lll}
\frac{\partial F^{1}}{\partial Y} & \frac{\partial F^{1}}{\partial C} & \frac{\partial F^{1}}{\partial T} \\
\frac{\partial F^{2}}{\partial Y} & \frac{\partial F^{2}}{\partial C^{3}} & \frac{\partial F^{2}}{\partial T} \\
\frac{\partial F^{3}}{\partial Y} & \frac{\partial F^{3}}{\partial C} & \frac{\partial F^{3}}{\partial T}
\end{array}\right|=\left|\begin{array}{ccc}
1 & -1 & 0 \\
-\beta & 1 & \beta \\
-\delta & 0 & 1
\end{array}\right|=1+\beta \delta-\beta \neq 0 \\
\Rightarrow & |J|=Y\left(I_{0}, G_{0}, \alpha, \beta, \gamma, \delta\right) \\
& C=C\left(I_{0}, G_{0}, \alpha, \beta, \gamma, \delta\right) \\
& T=T\left(I_{0}, G_{0}, \alpha, \beta, \gamma, \delta\right)
\end{aligned}
$$

- Implicit Function Rule (Extension)

$$
\begin{aligned}
& \quad F^{i}=0 \Rightarrow d F^{i}=0, \forall i \\
& \Rightarrow \\
& \frac{\partial F^{i}}{\partial y_{1}} d y_{1}+\cdots+\frac{\partial F^{i}}{\partial y_{n}} d y_{n}=-\left(\frac{\partial F^{i}}{\partial x_{1}} d x_{1}+\cdots+\frac{\partial F^{i}}{\partial x_{m}} d x_{m}\right), \forall i \\
& \\
& \text { Let } d x_{k}=0, \forall k \neq 1 \text {, then } \\
& \\
& {\left[\begin{array}{ccc}
\frac{\partial F^{1}}{\partial y_{1}} & \cdots & \frac{\partial F^{1}}{\partial y_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial F^{n}}{\partial y_{1}} & \cdots & \frac{\partial F^{n}}{\partial y_{n}}
\end{array}\right]\left[\begin{array}{c}
\frac{\partial y_{1}}{\partial x_{1}} \\
\vdots \\
\frac{\partial y_{n}}{\partial x_{1}}
\end{array}\right]=\left[\begin{array}{c}
-\frac{\partial F^{1}}{\partial x_{1}} \\
\vdots \\
-\frac{\partial F^{n}}{\partial x_{1}}
\end{array}\right]} \\
& \Rightarrow \\
& \frac{\partial y_{j}}{\partial x_{1}}=\frac{\left|J_{j}\right|}{|J|}, j=1 \sim n \text { and }|J| \neq 0 \text { guarantees a unique } \\
& \\
& \text { solution. }
\end{aligned}
$$

ex: $F^{1}(x, y, z)=x^{2}+y^{2}+z^{2}-3=0$

$$
F^{2}(x, y, z)=x+2 y+3 z=0
$$

$$
\Rightarrow \begin{aligned}
2 x d x+2 y d y & =-2 z d z \\
1 d x+2 d y & =-3 d z
\end{aligned}
$$

$$
\Rightarrow\left[\begin{array}{cc}
2 x & 2 y \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
d x / d z \\
d y / d z
\end{array}\right]=\left[\begin{array}{c}
-2 z \\
-3
\end{array}\right]
$$

$$
\Rightarrow \frac{d x}{d z}=\frac{\left|\begin{array}{cc}
-2 z & 2 y \\
-3 & 2
\end{array}\right|}{\left|\begin{array}{cc}
2 x & 2 y \\
1 & 2
\end{array}\right|}=\frac{6 y-4 z}{4 x-2 y}
$$

$$
\text { ex: } \begin{array}{rlrl}
& F^{1}=Y-C-I_{0}-G_{0}=0 \\
& F^{2}=C-\alpha-\beta(Y-T)=0 \\
& F^{3}=T-\gamma-\delta Y=0 \\
d Y-d C & & \\
\Rightarrow-\beta d Y+d C+\beta d T & = & d \alpha+ & (Y-T) d \beta \\
-\delta d Y+ & d T & = & d \gamma \\
-\quad+ & Y d \delta
\end{array}
$$

Let $d I_{0}=d G_{0}=d \alpha=d \beta=d \gamma=0$, then

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
-\beta & 1 & \beta \\
-\delta & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\partial Y / \partial \delta \\
\partial C / \partial \delta \\
\partial T / \partial \delta
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
Y
\end{array}\right]
$$

$$
\Rightarrow \frac{\partial Y}{\partial \delta}=\frac{1}{1+\beta \delta-\beta}\left|\begin{array}{ccc}
0 & -1 & 0 \\
0 & 1 & \beta \\
Y & 0 & 1
\end{array}\right|=\frac{-\beta Y}{1+\beta \delta-\beta}
$$

which equals $\frac{-\beta \bar{Y}}{1+\beta \delta-\beta}$ at $(\bar{Y}, \bar{C}, \bar{T})$.

Constrained Optimization

refer to textbook
Ch.12 Optimization with Equality Constraints

- max $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}+2 x_{1}$
s.t. $4 x_{1}+2 x_{2}=60$

Way 1 :

$$
\begin{aligned}
& x_{2}=30-2 x_{1} \\
\Rightarrow & U=x_{1}\left(30-2 x_{1}\right)+2 x_{1}=-2 x_{1}^{2}+32 x_{1} \\
\Rightarrow & \frac{d U}{d x_{1}}=-4 x_{1}+32 \stackrel{\text { set }}{=} 0 \\
\Rightarrow & \bar{x}_{1}=8, \quad \bar{x}_{2}=14
\end{aligned}
$$

- max $U\left(x_{1}, x_{2}\right)=x_{1} x_{2}+2 x_{1}$
s.t. $4 x_{1}+2 x_{2}=60$

Way 2 (Lagrange-Multiplier Method):

$$
\left.\begin{array}{l}
\mathcal{L}\left(x_{1}, x_{2}, \lambda\right)=\left(x_{1} x_{2}+2 x_{1}\right)+\lambda\left(60-4 x_{1}-2 x_{2}\right) \\
\Rightarrow \quad \mathcal{L}_{\lambda}=60-4 x_{1}-2 x_{2} \stackrel{\text { set }}{=} 0 \\
\mathcal{L}_{1}=x_{2}+2-4 \lambda \stackrel{\text { set }}{=} 0 \\
\mathcal{L}_{2}=x_{1}-2 \lambda \stackrel{\text { set }}{=} 0 \\
\Rightarrow \quad x_{1}=8, \quad \bar{x}_{2}=14
\end{array}\right\} \quad[1 \text { st-orc }
$$

- $\max U=x^{2}+2 x y+y w^{2}$

$$
\begin{array}{ll}
\text { s.t. } & 2 x+y+w^{2}=24 \\
& x+w=8
\end{array}
$$

$$
\Rightarrow \mathcal{L}=x^{2}+2 x y+y w^{2}+\lambda_{1}\left(24-2 x-y-w^{2}\right)+\lambda_{2}(8-x-w)
$$

$$
\Rightarrow \quad \mathcal{L}_{\lambda 1}=24-2 x-y-w^{2} \stackrel{\text { set }}{=} 0
$$

$$
\mathcal{L}_{\lambda 2}=8-x-w \stackrel{\text { set }}{=} 0
$$

$$
\mathcal{L}_{x}=2 x+2 y-2 \lambda_{1}-\lambda_{2} \stackrel{\text { set }}{=} 0
$$

[1st-order conditions]

$$
\mathcal{L}_{y}=2 x+w^{2}-\lambda_{1} \stackrel{\text { set }}{=} 0
$$

$$
\mathcal{L}_{w}=2 y w-2 \lambda_{1} w-\lambda_{2} \stackrel{\text { set }}{=} 0
$$

$$
\Rightarrow \bar{x}=8, \quad \bar{y}=8, \quad \bar{w}=0, \quad \bar{\lambda}_{1}=16, \quad \bar{\lambda}_{2}=0
$$

- max $U=x y z w$
s.t. $x+y+z+w=4$
$\Rightarrow \mathcal{L}=x y z w+\lambda(4-x-y-z-w)$
$\left.\Rightarrow \mathcal{L}_{\lambda}=4-x-y-z-w \stackrel{\text { set }}{=} 0\right)$
$\mathcal{L}_{x}=y z w-\lambda \stackrel{\text { set }}{=} 0$
$\mathcal{L}_{y}=x z w-\lambda \stackrel{\text { set }}{=} 0$
[1st-order conditions]
$\mathcal{L}_{z}=x y w-\lambda \stackrel{\text { set }}{=} 0$
$\mathcal{L}_{w}=x y z-\lambda \stackrel{\text { set }}{=} 0$
$\Rightarrow \bar{x}=1, \quad \bar{y}=1, \quad \bar{z}=1, \quad \bar{w}=1, \quad \bar{\lambda}=1$
- Determinantal test for a constrained extremum

1. Suppose there are m constraints and n variables.
2. Verify the signs of $\left|\bar{H}_{m+1}\right|,\left|\bar{H}_{m+2}\right|, \cdots,\left|\bar{H}_{n}\right|(=|\bar{H}|)$

Negative definite $\left\{\begin{array}{l}m \text { is even: }-\quad+\quad-\quad+\cdots \\ m \text { is odd: }+\quad-\quad+\quad-\quad .\end{array}\right.$

- 2nd-order condition (the Bordered Hessian)

Case 1:

$$
\begin{aligned}
& \quad \mathcal{L}=\left(x_{1} x_{2}+2 x_{1}\right)+\lambda\left(60-4 x_{1}-2 x_{2}\right) \\
& \Rightarrow m=1, \quad n=2 \quad \text { and } \\
& |\bar{H}|=\left|\begin{array}{rrr}
0 & -4 & -2 \\
-4 & 0 & 1 \\
-2 & 1 & 0
\end{array}\right| ; \\
& \Rightarrow \\
& \left|\bar{H}_{1+1}\right|=\left|\bar{H}_{2}\right|=|\bar{H}|=16>0
\end{aligned}
$$

- Case 2 :

$$
\begin{aligned}
& \mathcal{L}=\left(x^{2}+2 x y+y w^{2}\right)+\lambda_{1}\left(24-2 x-y-w^{2}\right)+\lambda_{2}(8-x-w) \\
& \Rightarrow m=2, \quad n=3 \text { and } \\
&|\bar{H}|=\left|\begin{array}{rrrrr}
0 & 0 & -2 & -1 & -2 w \\
0 & 0 & -1 & 0 & -1 \\
-2 & -1 & 2 & 2 & 0 \\
-1 & 0 & 2 & 0 & 2 w \\
-2 w & -1 & 0 & 2 w & 2 y-2 \lambda_{1}
\end{array}\right| ; \\
& \Rightarrow\left|\bar{H}_{2+1}\right|=\left|\bar{H}_{3}\right|=|\bar{H}|=-22<0
\end{aligned}
$$

- Case 3:

$$
\begin{aligned}
& \mathcal{L}=x y z w+\lambda(4-x-y-z-w) \\
\Rightarrow & m=1, \quad n=4 \quad \text { and }
\end{aligned}
$$

$$
|\bar{H}|=\left|\begin{array}{rrrrr}
0 & -1 & -1 & -1 & -1 \\
-1 & 0 & z w & y w & y z \\
-1 & z w & 0 & x w & x z \\
-1 & y w & x w & 0 & x y \\
-1 & y z & x z & x y & 0
\end{array}\right|
$$

$$
\Rightarrow\left|\bar{H}_{1+1}\right|=\left|\bar{H}_{2}\right|=2, \quad\left|\bar{H}_{3}\right|=-3, \quad\left|\bar{H}_{4}\right|=|\bar{H}|=4
$$

- $\max U=U\left(x_{1}, x_{2}\right)$
s.t. $p_{1} x_{1}+p_{2} x_{2}=m$

$$
\begin{aligned}
& \Rightarrow \mathcal{L}\left(x_{1}, x_{2}, \lambda, p_{1}, p_{2}, m\right)=U\left(x_{1}, x_{2}\right)+\lambda\left(m-p_{1} x_{1}-p_{2} x_{2}\right) \\
& \Rightarrow \mathcal{L}_{\lambda}=m-p_{1} x_{1}-p_{2} x_{2} \stackrel{\text { set }}{=} 0
\end{aligned}
$$

$$
\left.\begin{array}{l}
\mathcal{L}_{1}=U_{1}-\lambda p_{1} \stackrel{\text { set }}{=} 0 \\
\mathcal{L}_{2}=U_{2}-\lambda p_{2} \stackrel{\text { set }}{=} 0
\end{array}\right\} \Rightarrow M R S_{12}=\frac{U_{1}}{U_{2}}=\frac{\lambda p_{1}}{\lambda p_{2}}=\frac{p_{1}}{p_{2}}
$$

$$
\Rightarrow|J|=\left|\begin{array}{ccc}
0 & -p_{1} & -p_{2} \\
-p_{1} & U_{11} & U_{12} \\
-p_{2} & U_{21} & U_{22}
\end{array}\right| \neq 0 \Rightarrow \begin{aligned}
& \bar{x}_{1}=\bar{x}_{1}\left(p_{1}, p_{2}, m\right) \\
& \bar{x}_{2}=\bar{x}_{2}\left(p_{1}, p_{2}, m\right) \\
& \bar{\lambda}=\bar{\lambda}\left(p_{1}, p_{2}, m\right)
\end{aligned}
$$

- Define $\overline{\mathcal{L}}\left(p_{1}, p_{2}, m\right) \equiv \mathcal{L}\left(\bar{x}_{1}, \bar{x}_{2}, \bar{\lambda}, p_{1}, p_{2}, m\right)$

$$
\begin{aligned}
&=U\left(\bar{x}_{1}, \bar{x}_{2}\right)+\bar{\lambda}\left(m-p_{1} \bar{x}_{1}-p_{2} \bar{x}_{2}\right) \\
& \Rightarrow \frac{\partial \overline{\mathcal{L}}}{\partial m}=U_{1} \frac{\partial \bar{x}_{1}}{\partial m}+U_{2} \frac{\partial \bar{x}_{2}}{\partial m}+\frac{\partial \bar{\lambda}}{\partial m}\left(m-p_{1} \bar{x}_{1}-p_{2} \bar{x}_{2}\right) \\
&+\bar{\lambda}\left(1-p_{1} \frac{\partial \bar{x}_{1}}{\partial m}-p_{2} \frac{\partial \bar{x}_{2}}{\partial m}\right) \\
&=\left(U_{1}-\bar{\lambda} p_{1}\right) \frac{\partial \bar{x}_{1}}{\partial m}+\left(U_{2}-\bar{\lambda} p_{2}\right) \frac{\partial \bar{x}_{2}}{\partial m} \\
&+\left(m-p_{1} \bar{x}_{1}-p_{2} \bar{x}_{2}\right) \frac{\partial \bar{\lambda}}{\partial m}+\bar{\lambda} \\
&=\bar{\lambda}
\end{aligned}
$$

$\Rightarrow \bar{\lambda}$ measures the effect of a change in m on the optimal value of the objective function \mathcal{L}

$$
\begin{aligned}
& 0 d \lambda-p_{1} d x_{1}-p_{2} d x_{2}=\bar{x}_{1} d p_{1}+\bar{x}_{2} d p_{2}-d m \\
&-p_{1} d \lambda+U_{11} d x_{1}+U_{12} d x_{2}=\bar{\lambda} d p_{1} \\
&-p_{2} d \lambda+U_{21} d x_{1}+U_{22} d x_{2}=\bar{\lambda} d p_{2} \\
& \Rightarrow\left[\begin{array}{ccc}
0 & -p_{1} & -p_{2} \\
-p_{1} & U_{11} & U_{12} \\
-p_{2} & U_{21} & U_{22}
\end{array}\right]\left[\begin{array}{c}
d \lambda \\
d x_{1} \\
d x_{2}
\end{array}\right]=\left[\begin{array}{l}
\bar{x}_{1} d p_{1}+\bar{x}_{2} d p_{2}-d m \\
\bar{\lambda} d p_{1} \\
\bar{\lambda} d p_{2}
\end{array}\right] \\
& \Rightarrow d x_{1}=\frac{1}{|J|}\left|\begin{array}{cc}
0 & \bar{x}_{1} d p_{1}+\bar{x}_{2} d p_{2}-d m \\
-p_{1} & \bar{\lambda} d p_{1} \\
-p_{2} & \bar{\lambda} d p_{2}
\end{array}\right| \begin{array}{l}
U_{12} \\
-1
\end{array}
\end{aligned}
$$

- The Price Effect (Let $d m=d p_{2}=0$)

$$
\begin{aligned}
& \Rightarrow d x_{1}=\frac{1}{|J|}\left|\begin{array}{ccc}
0 & \bar{x}_{1} d p_{1} & -p_{2} \\
-p_{1} & \bar{\lambda} d p_{1} & U_{12} \\
-p_{2} & 0 & U_{22}
\end{array}\right|=\frac{1}{|J|}\left|\begin{array}{ccc}
0 & \bar{x}_{1} & -p_{2} \\
-p_{1} & \bar{\lambda} & U_{12} \\
-p_{2} & 0 & U_{22}
\end{array}\right| d p_{1} \\
&\left.\Rightarrow \frac{\partial x_{1}}{\partial p_{1}} \equiv \frac{d x_{1}}{d p_{1}}\right|_{d m=d p_{2}=0} \\
&=\frac{1}{|J|}\left(-\bar{x}_{1}\left|\begin{array}{cc}
-p_{1} & U_{12} \\
-p_{2} & U_{22}
\end{array}\right|+\bar{\lambda}\left|\begin{array}{cc}
0 & -p_{2} \\
-p_{2} & U_{22}
\end{array}\right|\right)
\end{aligned}
$$

- The Income Effect (Let $d p_{1}=d p_{2}=0$)

$$
\begin{aligned}
\Rightarrow d x_{1} & =\frac{1}{|J|}\left|\begin{array}{ccc}
0 & -d m & -p_{2} \\
-p_{1} & 0 & U_{12} \\
-p_{2} & 0 & U_{22}
\end{array}\right|=\frac{1}{|J|}\left|\begin{array}{ccc}
0 & -1 & -p_{2} \\
-p_{1} & 0 & U_{12} \\
-p_{2} & 0 & U_{22}
\end{array}\right| d m \\
\Rightarrow \frac{\partial x_{1}}{\partial m} & \left.\equiv \frac{d x_{1}}{d m}\right|_{d p_{1}=d p_{2}=0} \\
& =\frac{1}{|J|}\left|\begin{array}{cc}
-p_{1} & U_{12} \\
-p_{2} & U_{22}
\end{array}\right|
\end{aligned}
$$

- The Substitution Effect (Let $d U=0$)

$$
\begin{aligned}
& U=U\left(x_{1}, x_{2}\right) \Rightarrow d U=U_{1} d x_{1}+U_{2} d x_{2}=0 \\
& \quad \Rightarrow \bar{\lambda}\left(p_{1} d x_{1}+p_{2} d x_{2}\right)=0 \\
& \quad \Rightarrow \bar{x}_{1} d p_{1}+\bar{x}_{2} d p_{2}-d m=0 \\
& \left.\Rightarrow \frac{\partial x_{1}}{\partial p_{1}}\right|_{U=\bar{U}}=\left.\frac{d x_{1}}{d p_{1}}\right|_{d U=0} \text { and } d p_{2}=0 \\
& =\frac{1}{|J|}\left|\begin{array}{ccc}
0 & 0 & -p_{2} \\
-p_{1} & \bar{\lambda} & U_{12} \\
-p_{2} & 0 & U_{22}
\end{array}\right|=\frac{1}{|J|}\left(\bar{\lambda}\left|\begin{array}{cc}
0 & -p_{2} \\
-p_{2} & U_{22}
\end{array}\right|\right)<0
\end{aligned}
$$

- The Slutsky Equation

$$
\begin{aligned}
\frac{\partial x_{1}}{\partial p_{1}} & =\frac{1}{|J|}\left(-\bar{x}_{1}\left|\begin{array}{cc}
-p_{1} & U_{12} \\
-p_{2} & U_{22}
\end{array}\right|+\bar{\lambda}\left|\begin{array}{cc}
0 & -p_{2} \\
-p_{2} & U_{22}
\end{array}\right|\right) \\
& =\frac{1}{|J|}\left(\bar{\lambda}\left|\begin{array}{cc}
0 & -p_{2} \\
-p_{2} & U_{22}
\end{array}\right|\right)-\bar{x}_{1}\left(\frac{1}{|J|}\left|\begin{array}{ll}
-p_{1} & U_{12} \\
-p_{2} & U_{22}
\end{array}\right|\right) \\
& =\left.\frac{\partial x_{1}}{\partial p_{1}}\right|_{U=\bar{U}}-\bar{x}_{1}\left(\frac{\partial x_{1}}{\partial m}\right)
\end{aligned}
$$

- max $U=U\left(x_{1}, x_{2}\right)$
s.t. $p_{1} x_{1}+p_{2} x_{2}=m$
$\begin{aligned} \Rightarrow|\bar{H}| & =\left|\begin{array}{rrr}0 & -p_{1} & -p_{2} \\ -p_{1} & U_{11} & U_{12} \\ -p_{2} & U_{21} & U_{22}\end{array}\right| \\ & =-\left(p_{1}{ }^{2} U_{22}-2 p_{1} p_{2} U_{12}+p_{2}{ }^{2} U_{11}\right)>0\end{aligned}$

Let $U\left(x_{1}, x_{2}\right)=U_{0} \quad \Rightarrow \quad U_{1} d x_{1}+U_{2} d x_{2}=d U_{0}=0$
$\Rightarrow \frac{d x_{2}}{d x_{1}}=-\frac{U_{1}}{U_{2}}=-M R S_{12}<0$

$$
\begin{aligned}
\Rightarrow \frac{d^{2} x_{2}}{d x_{1}{ }^{2}} & \equiv \frac{d}{d x_{1}}\left(\frac{d x_{2}}{d x_{1}}\right) \\
& =\frac{d}{d x_{1}}\left(-\frac{U_{1}}{U_{2}}\right)=-\frac{1}{U_{2}{ }^{2}}\left(\frac{d U_{1}}{d x_{1}} \cdot U_{2}-\frac{d U_{2}}{d x_{1}} \cdot U_{1}\right) \\
\because & \frac{d U_{1}}{d x_{1}}=U_{11}+U_{12} \frac{d x_{2}}{d x_{1}}=U_{11}-\frac{U_{12} U_{1}}{U_{2}} \\
& \frac{d U_{2}}{d x_{1}}=U_{21}+U_{22} \frac{d x_{2}}{d x_{1}}=U_{12}-\frac{U_{22} U_{1}}{U_{2}} \\
\Rightarrow \frac{d^{2} x_{2}}{d x_{1}{ }^{2}} & =-\frac{1}{U_{2}^{3}}\left(U_{1}{ }^{2} U_{22}-2 U_{1} U_{2} U_{12}+U_{2}{ }^{2} U_{11}\right) \\
& =-\frac{\lambda^{2}}{U_{2}{ }^{3}}\left(p_{1}{ }^{2} U_{22}-2 p_{1} p_{2} U_{12}+p_{2}{ }^{2} U_{11}\right)>0
\end{aligned}
$$

- $\min \mathcal{C}=w L+r K$

$$
\left.\begin{array}{rl}
& \text { s.t. } F(L, K)=Q_{0} \\
\Rightarrow & \mathcal{L}=w L+r K+\lambda\left[Q_{0}-F(L, K)\right] \\
\Rightarrow & \mathcal{L}_{\lambda}=Q_{0}-F(L, K) \stackrel{\text { set }}{=} 0 \\
& \mathcal{L}_{L}=w-\lambda F_{L} \stackrel{\text { set }}{=} 0 \\
& \mathcal{L}_{K}=r-\lambda F_{K} \stackrel{\text { set }}{=} 0
\end{array}\right\} \Rightarrow M R T S=\frac{F_{L}}{F_{K}}=\frac{w}{r}
$$

Q: Write the bordered Hessian.
Q: Show all the iso-quant curves are negatively sloping and convex to the origin.

- (Homogeneous Functions)

A function f defined on \mathbb{R}^{N} is homogeneous of degree r if for every $t>0$ we have

$$
f\left(t x_{1}, t x_{2}, \cdots, t x_{N}\right)=t^{r} f\left(x_{1}, x_{2}, \cdots, x_{N}\right)
$$

ex: $f(x, y, z)=\frac{x}{y}+\frac{2 z}{3 x}$
ex: $g(x, y, z)=\frac{x^{2}}{y}+\frac{y z}{x}$
ex: $h(x, y, z)=2 x^{2}+3 x y-y z$
ex: $\mathcal{L}(x, y, z)=x^{3}-3 x y+y^{2} z$

- Suppose the production function $y=f(\mathbf{x}), \mathbf{x} \in \mathbb{R}_{+}^{N}$, is homogeneous of degree r, that is,

$$
f(t \mathbf{x})=t^{r} f(\mathbf{x})
$$

then this production function displays:
i. Increasing returns to scale if $r>1$
ii. Constant returns to scale if $r=1$
iii. Decreasing returns to scale if $r<1$

- Suppose that $y=f(\mathbf{x}), \mathbf{x} \in \mathbb{R}_{+}^{N}$ is a homogeneous function. If \mathbf{x}_{1} and x_{2} are any two points on the same level curve of the function f and we multiply each of these points by the same factor t to get points $t \mathbf{x}_{1}$ and $t \mathbf{x}_{2}$, respectively, then both of these points will also lie on a single-level curve.

- If f is homogeneous of degree r, then its first-order partial derivatives $\left(\partial f / \partial x_{i}, i=1 \ldots N\right)$ are homogeneous of degree $r-1$.
Proof: Note that $f_{i}(t \mathbf{x}) \equiv \frac{\partial f(t \mathbf{x})}{\partial\left(t x_{i}\right)} \neq \frac{\partial f(t \mathbf{x})}{\partial x_{i}}$
$f\left(t x_{1}, t x_{2}, \cdots, t x_{N}\right)=t^{r} f\left(x_{1}, x_{2}, \cdots, x_{N}\right)$
$\Rightarrow \frac{\partial}{\partial x_{i}}\left[f\left(t x_{1}, t x_{2}, \cdots, t x_{N}\right)\right]=\frac{\partial}{\partial x_{i}}\left[t^{r} f\left(x_{1}, x_{2}, \cdots, x_{N}\right)\right]$
$\Rightarrow \frac{\partial}{\partial\left(t x_{i}\right)}\left[f\left(t x_{1}, t x_{2}, \cdots, t x_{N}\right)\right] \frac{d\left(t x_{i}\right)}{d x_{i}}=t^{r} \frac{\partial}{\partial x_{i}}\left[f\left(x_{1}, x_{2}, \cdots, x_{N}\right)\right]$
$\Rightarrow f_{i}\left(t x_{1}, t x_{2}, \cdots, t x_{N}\right)=t^{r-1} f_{i}\left(x_{1}, x_{2}, \cdots, x_{N}\right)$
ex: $f\left(x_{1}, x_{2}\right)=x_{1}^{1 / 3} x_{2}^{1 / 4} \Rightarrow f_{1}\left(x_{1}, x_{2}\right)=\frac{1}{3} x_{1}^{-2 / 3} x_{2}^{1 / 4}$
- If $Q=F(K, L)$ is a production function that is homogeneous of degree 1 , then all its average and marginal products depend only on the capital-labor ratio.

Proof:

$$
\begin{aligned}
A P_{L} & \equiv \frac{Q}{L}=\frac{1}{L} F(K, L)=F\left(\frac{K}{L}, \frac{L}{L}\right)=F(k, 1)=f(k) \\
A P_{K} & \equiv \frac{Q}{K}=\frac{(Q / L)}{(K / L)}=f(k) / k \\
M P_{L} & \equiv \frac{\partial Q}{\partial L}=\frac{\partial}{\partial L}[L \cdot f(k)]=f(k)+L \cdot f^{\prime}(k) \cdot \frac{-K}{L^{2}} \\
& =f(k)-k f^{\prime}(k) \\
M P_{K} & \equiv \frac{\partial Q}{\partial K}=\frac{\partial}{\partial K}[L \cdot f(k)]=L \cdot f^{\prime}(k) \cdot \frac{1}{L}=f^{\prime}(k)
\end{aligned}
$$

- If $Q=F(K, L)$ is a production function which is homogeneous of degree r and has continuous first-order partial derivatives, then along any ray from the origin the slope of all isoquants, or the $M R T S$, is equal.

Proof:

Note the ratio K / L is constant along any ray from the origin.

$$
\begin{aligned}
\operatorname{MRTS}(t K, t L) & =\frac{M P_{L}(t K, t L)}{M P_{K}(t K, t L)}=\frac{t^{r-1} M P_{L}(K, L)}{t^{r-1} M P_{K}(K, L)} \\
& =\frac{M P_{L}(K, L)}{M P_{K}(K, L)}=\operatorname{MRTS}(K, L)
\end{aligned}
$$

- Euler's theorem

If $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}_{+}^{N}$, is homogeneous of degree r, then the following condition holds:

$$
f_{1} x_{1}+f_{2} x_{2}+\cdots+f_{N} x_{N}=r f\left(x_{1}, x_{2}, \ldots, x_{N}\right)
$$

Proof:

$$
\begin{gathered}
f\left(t x_{1}, t x_{2}, \cdots, t x_{N}\right)=t^{r} f\left(x_{1}, x_{2}, \cdots, x_{N}\right) \\
\Rightarrow \quad \frac{\partial}{\partial t}\left[f\left(t x_{1}, t x_{2}, \cdots, t x_{N}\right)\right]=\frac{\partial}{\partial t}\left[t^{r} f\left(x_{1}, x_{2}, \cdots, x_{N}\right)\right] \\
\Rightarrow \sum_{i=1}^{N}\left[\frac{\partial}{\partial\left(t x_{i}\right)} f\left(t x_{1}, t x_{2}, \cdots, t x_{N}\right)\right] \frac{\partial\left(t x_{i}\right)}{\partial t}=r t^{r-1} f\left(x_{1}, x_{2}, \cdots, x_{N}\right)
\end{gathered}
$$

Since this condition holds for any $t>0$, it also holds for $t=1$
$\Rightarrow \quad \sum_{i=1}^{N} f_{i}\left(x_{1}, x_{2}, \cdots, x_{N}\right) \cdot x_{i}=r f\left(x_{1}, x_{2}, \cdots, x_{N}\right)$

- A function is homothetic if it is a monotonic transformation of some homogeneous function, that is,

$$
f\left(x_{1}, x_{2}, \cdots, x_{N}\right)=h\left(g\left(x_{1}, x_{2}, \cdots, x_{N}\right)\right), \text { where } h^{\prime}(z)>0
$$

ex: $f\left(x_{1}, x_{2}\right)=1+x_{1}{ }^{1 / 2} x_{2}{ }^{1 / 2} \quad \Rightarrow h(z)=1+z$
ex: $f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2 / 3} x_{2}^{1 / 3}\right)^{r}, \quad r>0 \Rightarrow h(z)=z^{r}$
Thus, $\frac{f_{1}}{f_{2}}=\frac{h^{\prime}(z) \cdot g_{1}}{h^{\prime}(z) \cdot g_{2}}=\frac{g_{1}}{g_{2}}$

- The elasticity of substitution between inputs for a production function $Q=F(K, L)$ which has continuous marginal product functions is defined as
$\sigma=\frac{d \ln (K / L)}{d \ln (w / r)}$

$\sigma \equiv \frac{\text { relative change in }(K / L)}{\text { relative change in }(w / r)}$

$$
=\frac{\frac{d(K / L)}{(K / L)}}{\frac{d(w / r)}{(w / r)}}=\frac{d \ln (K / L)}{d \ln (w / r)}=\frac{d \ln (K / L)}{d \ln (M R T S)}
$$

ex: $F(K, L)=K^{2 / 3} L^{1 / 3}$

Integration

refer to textbook
Ch. 14 Economic Dynamics and Integral Calculus

- Suppose that $\frac{d}{d x} F(x)=f(x)$. When the derivative f is known, we can determine the primitive function F.
$\Rightarrow \quad \int f(x) d x=F(x)+C$
where \int is the integral sign
$f(x)$ denotes the integrand
C is referred to as the constant of integration
- Rules of indefinite integration

Rule 1 (Power rule)

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C, \quad n \neq-1
$$

ex: $f(x)=x^{3} \quad \Rightarrow \quad \int x^{3} d x=\frac{1}{4} x^{4}+C$
ex: $f(x)=1 \quad \Rightarrow \quad \int 1 d x=x+C$
ex: $f(x)=\frac{1}{x^{4}} \quad \Rightarrow \quad \int x^{-4} d x=\frac{1}{(-3)} x^{-3}+C$
ex: $f(x)=\sqrt{x^{3}} \quad \Rightarrow \quad \int x^{3 / 2} d x=\frac{2}{5} x^{5 / 2}+C$

Rule 2 (Exponential rule)

$$
\begin{gathered}
\int e^{x} d x=e^{x}+C \\
\text { and } \int f^{\prime}(x) e^{f(x)} d x=e^{f(x)}+C \\
\text { ex: } f(x)=2 e^{2 x} \Rightarrow \int 2 e^{2 x} d x=e^{2 x}+C \\
\text { ex: } f(x)=(2 x) \exp \left(x^{2}\right) \Rightarrow \int(2 x) \exp \left(x^{2}\right) d x=\exp \left(x^{2}\right)+C
\end{gathered}
$$

Rule 3 (Logarithmic rule)

$$
\begin{gathered}
\int \frac{1}{x} d x=\ln x+C, x>0 \\
\text { and } \int \frac{g^{\prime}(x)}{g(x)} d x=\ln g(x)+C, g(x)>0
\end{gathered}
$$

ex: $f(x)=\frac{2}{x} \quad \Rightarrow \quad \int \frac{2}{x} d x=2 \ln x+C, x>0$
ex: $f(x)=\frac{14 x}{7 x^{2}+5} \Rightarrow \int \frac{14 x}{7 x^{2}+5} d x=\ln \left(7 x^{2}+5\right)+C$
ex: $\quad f(x)=\frac{x}{x^{2}-1}$

$$
\Rightarrow \int \frac{x}{x^{2}-1} d x= \begin{cases}\frac{1}{2} \ln \left(x^{2}-1\right)+C, & x>1 \text { or } x<-1 \\ \frac{1}{2} \ln \left(1-x^{2}\right)+C, & -1<x<1\end{cases}
$$

Rule 4 (integral of a sum)

$$
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x
$$

Rule 5 (integral of a constant multiple)

ex: $\int\left(3 x^{2}+8 x^{5}\right) d x=3 \int x^{2} d x+8 \int x^{5} d x$

$$
=3\left(\frac{1}{3} x^{3}+C_{1}\right)+8\left(\frac{1}{6} x^{6}+C_{2}\right)
$$

$$
=x^{3}+\frac{4}{3} x^{6}+C
$$

Rule 6 (the substitution rule)

$$
\int\left[f(u) \cdot\left(\frac{d u}{d x}\right)\right] d x=F(u)+C
$$

Proof

$$
\frac{d}{d x} F(u)=\left[\frac{d}{d u} F(u)\right] \cdot\left(\frac{d u}{d x}\right)=f(u) \cdot\left(\frac{d u}{d x}\right)
$$

ex: $\int 6 x^{2}\left(x^{3}+2\right)^{99} d x \Rightarrow$ Let $u=x^{3}+2$, then $\frac{d u}{d x}=3 x^{2}$

$$
\begin{aligned}
& =\int 2\left(3 x^{2}\right)\left(x^{3}+2\right)^{99} d x=2 \int u^{99}\left(\frac{d u}{d x}\right) d x \\
& =\frac{2}{100} u^{100}+C=\frac{1}{50}\left(x^{3}+2\right)^{100}+C
\end{aligned}
$$

Rule 7 (Integration by parts)

$$
\int v d u=u v-\int u d v
$$

Proof

$$
\begin{aligned}
& d(u v)=v d u+u d v \\
\Rightarrow & \int d(u v)=\int v d u+\int u d v \\
\Rightarrow & u v=\int v d u+\int u d v
\end{aligned}
$$

ex: $\int x(x+1)^{1 / 2} d x \Rightarrow \begin{aligned} & \text { Let } v=x \text { and } d u=(x+1)^{1 / 2} d x, \\ & \text { then } d v=d x \text { and } u=\frac{2}{3}(x+1)^{3 / 2}\end{aligned}$

$$
\begin{aligned}
& =x\left[\frac{2}{3}(x+1)^{3 / 2}\right]-\int \frac{2}{3}(x+1)^{3 / 2} d x \\
& =\frac{2}{3} x(x+1)^{3 / 2}-\frac{4}{15}(x+1)^{5 / 2}+C
\end{aligned}
$$

ex: $\int \ln x d x \quad$ Let $v=\ln x$ and $d u=d x$, then $d v=\frac{1}{x} d x$ and $u=x$
$=x \ln x-\int x\left(\frac{1}{x} d x\right)=x \ln x-x+C$
ex: $\int x^{x} d x \Rightarrow$ Let $v=x$ and $d u=e^{x} d x$, then $d v=d x$ and $u=e^{x}$

$$
=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C
$$

Differential Equations

refer to textbook
Ch. 15 Continuous Time: First-Order Differential Equations
Ch. 16 Higher-Order Differential Equations

- First-Order Linear Differential Equations

$$
\frac{d y}{d t}+u(t) y=w(t)
$$

or

$$
\dot{y}+u(t) y=w(t)
$$

Note that $(d y / d t) \rightarrow$ 1st-order

$$
\begin{array}{ll}
\left(d^{2} y / d t^{2}\right) & \rightarrow \text { 2nd-order } \\
(d y / d t)^{1} & \rightarrow \text { degree } 1 \\
(d y / d t)^{r} \rightarrow \text { degree } r
\end{array}
$$

Case 1 (Homogeneous with Constant Coefficients)

$$
\begin{aligned}
& \text { ex: } \frac{d y}{d t}+4 y=0 \\
& \Rightarrow \frac{d y}{d t}=-4 y \quad \text { or } \quad \frac{1}{y} d y=-4 d t \\
& \Rightarrow \quad \int \frac{1}{y} d y=\int(-4) d t \\
& \Rightarrow \ln |y|=-4 t+C \quad \text { or } \quad|y|=e^{-4 t+C} \\
& \Rightarrow y(t)= \pm e^{-4 t} \cdot e^{C}= \pm A e^{-4 t} \\
& =y(0) e^{-4 t} \\
& \text { [general solution] } \\
& \text { [definite solution] }
\end{aligned}
$$

Case 2 (Nonhomogeneous with Constant Coefficients)

ex: $\frac{d y}{d t}+2 y=6 \quad \Rightarrow$

$$
\left\{\begin{array}{c}
\text { (reduced eq.) } \frac{d y}{d t}+2 y=0 \\
\Longrightarrow y_{c}=A e^{-2 t} \quad \text { complementary function } \\
\text { (complete eq.) } \frac{d y}{d t}+2 y=6 \\
\Longrightarrow y_{p}=3 \quad \text { particular integral }
\end{array}\right.
$$

$$
\begin{aligned}
& \operatorname{try} y=k \\
& +y_{p}=A e^{-2 t}+3
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow y(t) & =y_{c}+y_{p}=A e^{-2 t}+3 & & {[\text { general solution }] } \\
& =[y(0)-3] e^{-2 t}+3 & & {[\text { definite solution }] }
\end{aligned}
$$

proof:

$$
\begin{aligned}
& \frac{d y}{d t}+a y=b \quad \Rightarrow \quad y_{p} \\
& \frac{d y}{d t}+a y=0 \quad \Rightarrow \quad y_{c}
\end{aligned}
$$

Let $y=y_{p}+y_{c}$, then

$$
\frac{d y}{d t}=\frac{d}{d t}\left(y_{p}+y_{c}\right)=\frac{d y_{p}}{d t}+\frac{d y_{c}}{d t}
$$

$$
a y=a\left(y_{p}+y_{c}\right)=a y_{p}+a y_{c}
$$

$$
\Rightarrow \frac{d y}{d t}+a y=\left(\frac{d y_{p}}{d t}+a y_{p}\right)+\left(\frac{d y_{c}}{d t}+a y_{c}\right)=b
$$

ex: $\frac{d y}{d t}=2$
Way 1

$$
\int d y=\int 2 d t \Rightarrow y(t)=2 t+C=y(0)+2 t
$$

Way 2

$$
\begin{aligned}
& \frac{d y}{d t}=0 \quad \Longrightarrow \quad y_{c}=A \\
& \frac{d y}{d t}=2 \quad \Longrightarrow \quad y_{p}=2 t \\
& \text { try } y=k t \\
& \Rightarrow y(t)=y_{c}+y_{p}=A+2 t=y(0)+2 t
\end{aligned}
$$

Case 3 (Homogeneous with Variable Coefficients)

$$
\begin{aligned}
& \text { ex: } \frac{d y}{d t}+\left(3 t^{2}\right) y=0 \\
& \Rightarrow \int \frac{1}{y} d y=\int\left(-3 t^{2}\right) d t \\
& \Rightarrow \ln |y|=-t^{3}+C \\
& \Rightarrow y(t)= \pm A e^{-t^{3}}=y(0) e^{-t^{3}}
\end{aligned}
$$

Case 4 (Nonhomogeneous with Variable Coefficients)

- Exact Differential Equations

We say that

$$
M d y+N d t=0
$$

is exact if and only if there exists a function $F(y, t)$ such that

$$
M=\frac{\partial F}{\partial y} \text { and } N=\frac{\partial F}{\partial t},\left(\text { or } \frac{\partial M}{\partial t}=\frac{\partial N}{\partial y} \text { is met }\right)
$$

$$
\Rightarrow d F(y, t)=\frac{\partial F}{\partial y} d y+\frac{\partial F}{\partial t} d t=0
$$

Step $1 \quad F(y, t)=\int M d y+\psi(t)$
Step $2 \frac{\partial}{\partial t}\left[\int M d y+\psi(t)\right]=N$
Step 3 Solve for $\psi(t)$
Step 4 Replace $\psi(t)$ into $F(y, t)$ and then $F(y, t)=C$ will be the solution.
ex: $(2 y t) d y+y^{2} d t=0$
$\Rightarrow \frac{\partial}{\partial t}(2 y t)=2 y=\frac{\partial}{\partial y}\left(y^{2}\right) \quad$ Exact !

Step $1 \quad F(y, t)=\int(2 y t) d y+\psi(t)=t y^{2}+C_{1}+\psi(t)$
Step $2 \quad \frac{\partial}{\partial t}\left[t y^{2}+C_{1}+\psi(t)\right]=y^{2}+\psi^{\prime}(t)=y^{2} \Rightarrow \psi^{\prime}(t)=0$
Step $3 \psi(t)=C_{2}$

Step $4 \quad F(y, t)=t y^{2}+C_{1}+C_{2}=C_{3}$

$$
\Rightarrow t y^{2}=C \quad \text { or } \quad y(t)= \pm \sqrt{\frac{C}{t}}
$$

$\mathbf{e x}:(t+2 y) d y+\left(y+3 t^{2}\right) d t=0$
$\Rightarrow \frac{\partial}{\partial t}(t+2 y)=1=\frac{\partial}{\partial y}\left(y+3 t^{2}\right) \quad$ Exact!

Step $1 \quad F(y, t)=\int(t+2 y) d y+\psi(t)=t y+y^{2}+C_{1}+\psi(t)$
Step $2 \quad \frac{\partial}{\partial t}\left[t y+y^{2}+C_{1}+\psi(t)\right]=y+\psi^{\prime}(t)=y+3 t^{2}$

$$
\Rightarrow \psi^{\prime}(t)=3 t^{2}
$$

Step $3 \quad \psi(t)=t^{3}+C_{2}$
Step $4 \quad F(y, t)=t y+y^{2}+C_{1}+t^{3}+C_{2}=C_{3}$

$$
\begin{aligned}
& \Rightarrow y^{2}+t y+\left(t^{3}-C\right)=0 \\
& \Rightarrow y(t)=\frac{-t \pm \sqrt{t^{2}-4\left(t^{3}-C\right)}}{2}
\end{aligned}
$$

- What if $\frac{\partial}{\partial t} M \neq \frac{\partial}{\partial y} N$?

$$
\begin{aligned}
& \text { ex: }(2 t) d y+y d t=0 \\
& \Rightarrow \frac{\partial}{\partial t}(2 t)=2 \neq 1=\frac{\partial}{\partial y} y
\end{aligned}
$$

ex: $2\left(t^{3}+1\right) d y+\left(3 y t^{2}\right) d t=0$
$\Rightarrow \frac{\partial}{\partial t}\left(2 t^{3}+2\right)=6 t^{2} \neq 3 t^{2}=\frac{\partial}{\partial y}\left(3 y t^{2}\right)$
ex: $\left(4 y^{3} t\right) d y+\left(2 y^{4}+3 t\right) d t=0$
$\Rightarrow \frac{\partial}{\partial t}\left(4 y^{3} t\right)=4 y^{3} \neq 8 y^{3}=\frac{\partial}{\partial y}\left(2 y^{4}+3 t\right)$

\Rightarrow Look for the possible Integrating Factors !

$$
\begin{aligned}
& \text { ex: }(2 t y) d y+y^{2} d t=0 \\
& \Rightarrow \frac{\partial}{\partial t}(2 t y)=2 y=\frac{\partial}{\partial y}\left(y^{2}\right)
\end{aligned}
$$

$$
\mathrm{ex}: 2\left(t^{3}+1\right) y d y+\left(3 y^{2} t^{2}\right) d t=0
$$

$$
\Rightarrow \frac{\partial}{\partial t}\left[2\left(t^{3}+1\right) y\right]=6 t^{2} y=\frac{\partial}{\partial y}\left(3 y^{2} t^{2}\right)
$$

$$
\text { ex: }\left(4 y^{3} t^{2}\right) d y+\left(2 y^{4} t+3 t^{2}\right) d t=0
$$

$$
\Rightarrow \frac{\partial}{\partial t}\left(4 y^{3} t^{2}\right)=8 y^{3} t=\frac{\partial}{\partial y}\left(2 y^{4} t+3 t^{2}\right)
$$

- Integrating Factors

$$
\begin{aligned}
& \frac{d y}{d t}+u(t) y=w(t) \Rightarrow d y+[u(t) y-w(t)] d t=0 \\
\Rightarrow & I(t) d y+I(t)[u(t) y-w(t)] d t=0 \\
\Rightarrow & \frac{\partial}{\partial t} I(t)=\frac{\partial}{\partial y}(I(t)[u(t) y-w(t)])=I(t) u(t) \\
\Rightarrow & \int \frac{1}{I} d I=\int u(t) d t=\ln |I| \\
\Rightarrow & I(t)=\exp \left[\int u(t) d t\right]
\end{aligned}
$$

ex: $2 t d y+y d t=0$
$\Rightarrow \frac{d y}{d t}+\left(\frac{1}{2 t}\right) y=0 \Rightarrow u(t)=\frac{1}{2 t}$
\Rightarrow I.F. $=\exp \left[\int \frac{1}{2 t} d t\right]=e^{\frac{1}{2} \ln t}=t^{\frac{1}{2}}$

Check:

$$
\begin{aligned}
& d y+\left(\frac{1}{2 t}\right) y d t=0 \\
\Rightarrow & t^{\frac{1}{2}} d y+\left(\frac{1}{2} t^{-\frac{1}{2}}\right) y d t=0 \\
\Rightarrow & \frac{\partial}{\partial t}\left(t^{\frac{1}{2}}\right)=\frac{1}{2} t^{-\frac{1}{2}}=\frac{\partial}{\partial y}\left[\left(\frac{1}{2} t^{-\frac{1}{2}}\right) y\right]
\end{aligned}
$$

ex: $2\left(t^{3}+1\right) d y+3 y t^{2} d t=0$
$\Rightarrow \frac{d y}{d t}+\frac{3 t^{2}}{2\left(t^{3}+1\right)} y=0 \quad \Rightarrow \quad u(t)=\frac{3 t^{2}}{2\left(t^{3}+1\right)}$
\Rightarrow I.F. $=\exp \left[\int \frac{3 t^{2}}{2\left(t^{3}+1\right)} d t\right]=e^{\frac{1}{2} \ln \left(t^{3}+1\right)}=\left(t^{3}+1\right)^{\frac{1}{2}}$

Check:

$$
\begin{aligned}
& d y+\frac{3 t^{2}}{2\left(t^{3}+1\right)} y d t=0 \\
\Rightarrow & \left(t^{3}+1\right)^{\frac{1}{2}} d y+\frac{3}{2} t^{2}\left(t^{3}+1\right)^{-\frac{1}{2}} y d t=0 \\
\Rightarrow & \frac{\partial}{\partial t}\left[\left(t^{3}+1\right)^{\frac{1}{2}}\right]=\frac{1}{2}\left(t^{3}+1\right)^{-\frac{1}{2}}\left(3 t^{2}\right)=\frac{\partial}{\partial y}\left[\frac{3}{2} t^{2}\left(t^{3}+1\right)^{-\frac{1}{2}}\right]
\end{aligned}
$$

- Bernoulli Equation

$$
\begin{aligned}
& \frac{d y}{d t}+R(t) y=F(t) y^{m}, \quad m \neq 0,1 \\
\Rightarrow & y^{-m} \cdot \frac{d y}{d t}+R(t) y^{1-m}=F(t) \\
& \text { Let } z=y^{1-m}, \quad \text { so that } \\
& \frac{d z}{d t}=\left(\frac{d z}{d y}\right)\left(\frac{d y}{d t}\right)=(1-m) y^{-m}\left(\frac{d y}{d t}\right) \\
\Rightarrow & \frac{1}{1-m} \cdot \frac{d z}{d t}+R(t) z=F(t) \\
& \text { or } \quad \frac{d z}{d t}+(1-m) R(t) z=(1-m) F(t)
\end{aligned}
$$

ex: $\frac{d y}{d t}+\left(\frac{1}{t}\right) y=y^{3} \Rightarrow y^{-3} \frac{d y}{d t}+\left(\frac{1}{t}\right) y^{-2}=1$
\Rightarrow Let $z=y^{-2}$, so that $\frac{d z}{d t}=\left(\frac{d z}{d y}\right)\left(\frac{d y}{d t}\right)=(-2) y^{-3}\left(\frac{d y}{d t}\right)$
$\Rightarrow \frac{1}{(-2)} \frac{d z}{d t}+\left(\frac{1}{t}\right) z=1 \quad$ or $\quad \frac{d z}{d t}+\left(\frac{-2}{t}\right) z=-2$
\Rightarrow I.F. $=\exp \left[\int\left(\frac{-2}{t}\right) d t\right]=e^{-2 \ln t}=\frac{1}{t^{2}}$
$\Rightarrow\left(\frac{1}{t^{2}}\right) d z+\left[\left(\frac{-2}{t^{3}}\right) z+2\left(\frac{1}{t^{2}}\right)\right] d t=0$

Check:

$$
\frac{\partial}{\partial t}\left[\frac{1}{t^{2}}\right]=(-2) t^{-3}=\frac{\partial}{\partial z}\left[\left(\frac{-2}{t^{3}}\right) z+2\left(\frac{1}{t^{2}}\right)\right]
$$

$$
\left(\frac{1}{t^{2}}\right) d z+\left[\left(\frac{-2}{t^{3}}\right) z+2\left(\frac{1}{t^{2}}\right)\right] d t=0
$$

Step $1 \quad F(z, t)=\int\left(\frac{1}{t^{2}}\right) d z+\psi(t)=t^{-2} z+\psi(t)$
Step $2 \frac{\partial}{\partial t}\left[t^{-2} z+\psi(t)\right]=(-2) t^{-3} z+\psi^{\prime}(t)=\left(\frac{-2}{t^{3}}\right) z+2\left(\frac{1}{t^{2}}\right)$ $\Rightarrow \psi^{\prime}(t)=2 t^{-2}$

Step $3 \quad \psi(t)=(-2) t^{-1}$
Step $4 F(z, t)=t^{-2} z+(-2) t^{-1}=C$

$$
\begin{aligned}
& \Rightarrow z=2 t+C t^{2}=y^{-2} \\
& \Rightarrow y(t)= \pm \sqrt{\frac{1}{2 t+C t^{2}}}
\end{aligned}
$$

- Phase Diagram $\frac{d y}{d t}=f(y)$

$$
\begin{aligned}
& \text { ex: } \frac{d y}{d t}=y-7 \Rightarrow \frac{d y}{d t}-y=-7 \\
& \Rightarrow y_{c}=A e^{t} \text { and } y_{p}=7
\end{aligned}
$$

$$
\Rightarrow y(t)=A e^{t}+7=[y(0)-7] e^{t}+7
$$

ex: $\frac{d y}{d t}=(y+1)^{2}-16$

Solow Growth Model

$$
\text { - } \begin{aligned}
Y=F(K, L) \quad \xrightarrow{\text { CRTS }} \quad Y & =L \cdot F\left(\frac{K}{L}, \frac{L}{L}\right)=L \cdot f(k) \\
\text { or } \quad y & =f(k)
\end{aligned}
$$

Solow Growth Model

$$
\begin{array}{ll}
\text { - } I=\frac{d K}{d t}+\delta K=\dot{K}+\delta K & (0<\delta<1) \\
S=s Y & (0<s<1) \\
\text { - } \gamma_{L} \equiv \frac{\dot{L}}{L}=n &
\end{array}
$$

$$
\Rightarrow s Y=\dot{K}+\delta K=\left(\gamma_{K}+\delta\right) K
$$

(Note that $\left.\gamma_{K}=\gamma_{k}+\gamma_{L}\right)$
$\Rightarrow \quad s y=\left(\gamma_{k}+n+\delta\right) k=\dot{k}+(n+\delta) k$

$$
\text { or } \quad \dot{k}=s f(k)-(n+\delta) k
$$

[Solow equation]

Solow Growth Model

Solow Growth Model

- $\gamma_{k} \equiv \dot{k} / k=s f(k) / k-(n+\delta)$

Solow Growth Model

- $\gamma_{k} \equiv \dot{k} / k=s f(k) / k-(n+\delta)$

- Hypothesis: Poor Economies tend to grow faster per capita than rich ones.

Solow Growth Model

- saving rate
- depreciation rate
- production function
- population growth rate

Solow Growth Model

ex: $\dot{k}=s k^{0.7}-(n+\delta) k$
$\Rightarrow \frac{d k}{d t}+(n+\delta) k=s k^{0.7} \quad$ or $\quad k^{-0.7}\left(\frac{d k}{d t}\right)+(n+\delta) k^{0.3}=s$
Let $\quad z=k^{0.3} \quad$ so that $\quad \frac{d z}{d t}=0.3 k^{-0.7}\left(\frac{d k}{d t}\right)$
hence $\frac{d z}{d t}+0.3(n+\delta) z=0.3 s$

$$
\begin{aligned}
\Rightarrow z(t) & =\frac{s}{n+\delta}+\left[z(0)-\frac{s}{n+\delta}\right] e^{-0.3(n+\delta) t} \quad \text { or } \\
k(t) & =\left\{\frac{s}{n+\delta}+\left[k(0)^{0.3}-\frac{s}{n+\delta}\right] e^{-0.3(n+\delta) t}\right\}^{\frac{1}{0.3}}
\end{aligned}
$$

Solow Growth Model

ex: Maximize $\quad c^{*}=f\left(k^{*}\right)-s f\left(k^{*}\right)=(1-s) f\left(k^{*}\right)$
\Rightarrow Since $s f\left(k^{*}\right)-(n+\delta) k^{*}=0 \quad$ at equilibrium (WHY?)
therefore, $\quad k^{*}=k^{*}(s) \quad$ and $\quad \frac{d k^{*}}{d s}=-\frac{f\left(k^{*}\right)}{s f^{\prime}\left(k^{*}\right)-(n+\delta)}$
$\Rightarrow \frac{d c^{*}}{d s}=-f\left(k^{*}\right)+(1-s) f^{\prime}\left(k^{*}\right) \cdot\left(\frac{d}{d s} k^{*}\right)$
$=-f\left(k^{*}\right)+(1-s) f^{\prime}\left(k^{*}\right) \cdot\left(-\frac{f\left(k^{*}\right)}{s f^{\prime}\left(k^{*}\right)-(n+\delta)}\right)$
$=\left(-\frac{f\left(k^{*}\right)}{s f^{\prime}\left(k^{*}\right)-(n+\delta)}\right) \cdot\left[f^{\prime}\left(k^{*}\right)-(n+\delta)\right]$

Solow Growth Model

Nth-Order Linear Differential Equations

$$
\frac{d^{n} y}{d t^{n}}+a_{1} \frac{d^{n-1} y}{d t^{n-1}}+\cdots+a_{n-1} \frac{d y}{d t}+a_{n} y=b
$$

or

$$
y^{(n)}(t)+a_{1} y^{(n-1)}(t)+\cdots+a_{n-1} y^{\prime}(t)+a_{n} y=b
$$

1. Look for the particular integral: y_{p}
ex: $y^{\prime \prime}(t)+y^{\prime}(t)-2 y(t)=-10 \quad$ try $\underset{y_{p}}{\Longrightarrow}=k \quad y_{p}=5 \quad \mathbf{O}$
ex: $y^{\prime \prime}(t)+y^{\prime}(t)=-10 \quad$ try $\underset{y_{p}}{\Longrightarrow}=k \quad 0=-10 \quad \mathbf{X}$

$$
\operatorname{try} \underset{y_{p}}{\Longrightarrow}=k t \quad y_{p}=-10 t \mathbf{O}
$$

ex: $y^{\prime \prime}(t)=-10$
2. Solve the complementary function: y_{c}
$y^{\prime \prime}(t)+a_{1} y^{\prime}(t)+a_{2} y(t)=0$

- Let $y_{c}=A e^{r t}$, so that $y^{\prime}(t)=r A e^{r t}$ and $y^{\prime \prime}(t)=r^{2} A e^{r t}$
$\Rightarrow A e^{r t}\left(r^{2}+a_{1} r+a_{2}\right)=0$, we call $r^{2}+a_{1} r+a_{2}=0$ as a characteristic (or auxiliary) equation. (Can $A=0$ happen?)
$\Rightarrow r_{1}, r_{2}=\frac{-a_{1} \pm \sqrt{a_{1}^{2}-4 a_{2}}}{2} \Rightarrow y_{1}=A_{1} e^{r_{1} t}, \quad y_{2}=A_{2} e^{r_{2} t}$
$\Rightarrow y_{c}=y_{1}+y_{2}=A_{1} e^{r_{1} t}+A_{2} e^{r_{2} t}$
(Why not just pick any one of them?)
- Case 1. Two distinct real roots $\left(a_{1}^{2}>4 a_{2}\right)$
ex: $y^{\prime \prime}(t)+y^{\prime}(t)-2 y(t)=-10$

$$
\begin{aligned}
& \Rightarrow r^{2}+r-2=(r+2)(r-1)=0 \quad \Rightarrow \quad r_{1}=1, r_{2}=-2 \\
& \Rightarrow y_{c}=A_{1} e^{1 t}+A_{2} e^{-2 t} \quad \text { and } \quad y(t)=y_{c}+y_{p}=A_{1} e^{1 t}+A_{2} e^{-2 t}+5
\end{aligned}
$$

If we let $y(0)=12$ and $y^{\prime}(0)=-2$, then
$A_{1}+A_{2}+5=12$ and $A_{1}+(-2) A_{2}=-2$
$\Rightarrow A_{1}=4, A_{2}=3$, and $y(t)=4 e^{1 t}+3 e^{-2 t}+5$

- Case 2. Two repeated real roots $\left(a_{1}^{2}=4 a_{2} \quad \Rightarrow \quad r=-\frac{a_{1}}{2}\right)$
ex: $y^{\prime \prime}(t)+6 y^{\prime}(t)+9 y(t)=27$
$\Rightarrow r^{2}+6 r+9=(r+3)^{2}=0 \quad \Rightarrow \quad r_{1}=r_{2}=-3$
$\Rightarrow y_{c}=A_{1} e^{-3 t}+A_{2} e^{-3 t}=A_{3} e^{-3 t}$
(Only one constant can be identified!)
If we let $y_{c}=A_{4} t e^{r t}$ (Can it be another solution?)
then $y(t)=\left(A_{3}+A_{4} t\right) e^{-3 t}+3$
(Solve the definite solution given $y(0)=5$ and $y^{\prime}(0)=-5$)

Trigonometric Functions and Complex Numbers

$$
\begin{aligned}
Z=a+b i & =\sqrt{a^{2}+b^{2}}\left(\frac{a}{\sqrt{a^{2}+b^{2}}}+\frac{b}{\sqrt{a^{2}+b^{2}}} i\right) \\
& =R(\cos \theta+i \sin \theta)
\end{aligned}
$$

- $\sin ^{2} \theta+\cos ^{2} \theta=1$

- $\sin \left(\theta_{1} \pm \theta_{2}\right)=\sin \theta_{1} \cos \theta_{2} \pm \cos \theta_{1} \sin \theta_{2}$

$$
\cos \left(\theta_{1} \pm \theta_{2}\right)=\cos \theta_{1} \cos \theta_{2} \mp \sin \theta_{1} \sin \theta_{2}
$$

- $Z_{1} Z_{2}=R_{1} R_{2}\left(\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right)$
- $Z^{n}=R^{n}(\cos n \theta+i \sin n \theta)$
- $\frac{d}{d \theta} \sin \theta=\cos \theta, \quad \frac{d}{d \theta} \cos \theta=-\sin \theta$

Trigonometric Functions and Complex Numbers

$$
\begin{array}{llll}
f(\theta)=\sin \theta & f(0)=0 & g(\theta)=\cos \theta & g(0)=1 \\
f^{\prime}(\theta)=\cos \theta & f^{\prime}(0)=1 & g^{\prime}(\theta)=-\sin \theta & g^{\prime}(0)=0 \\
f^{\prime \prime}(\theta)=-\sin \theta & f^{\prime \prime}(0)=0 & g^{\prime \prime}(\theta)=-\cos \theta & g^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(\theta)=-\cos \theta & f^{\prime \prime \prime}(0)=-1 & g^{\prime \prime \prime}(\theta)=\sin \theta & g^{\prime \prime \prime}(0)=0 \\
f^{(4)}(\theta)=\sin \theta & f^{(4)}(0)=0 & g^{(4)}(\theta)=\cos \theta & g^{(4)}(0)=1 \\
\vdots & \vdots & \vdots & \vdots \\
\sin \theta & =0+\frac{1}{1!} \theta+\frac{0}{2!} \theta^{2}+\frac{-1}{3!} \theta^{3}+\frac{0}{4!} \theta^{4}+\frac{1}{5!} \theta^{5}+\cdots+\frac{\chi^{(n)}(p)}{(n \pm 1()!} \theta^{n+1} \\
& =\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\cdots \\
\cos \theta & =1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\cdots
\end{array}
$$

Trigonometric Functions and Complex Numbers

$$
\begin{aligned}
& e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!}+\cdots \\
& e^{(i \theta)}=1+\frac{(i \theta)}{1!}+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\cdots \\
&=1+i \theta-\frac{\theta^{2}}{2!}-\frac{i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\frac{i \theta^{5}}{5!} \cdots \\
&=\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!} \cdots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!} \cdots\right) \\
&=\cos \theta+i \sin \theta \\
& e^{(-i \theta)}=\cos \theta-i \sin \theta \\
& Z=a \pm b i=R(\cos \theta \pm i \sin \theta)=R e^{ \pm i \theta} \\
&=a r \text { cartesian form } \quad \text { polar form } \quad \text { exponential form }
\end{aligned}
$$

- Case 3. Two (conjugate) complex roots $\left(a_{1}^{2}<4 a_{2}\right)$

$$
\begin{aligned}
r_{1}, r_{2}= & \frac{-a_{1} \pm \sqrt{4 a_{2}-a_{1}^{2}} i}{2}=\alpha \pm \beta i \\
y_{c} & =A_{1} e^{(\alpha+\beta i) t}+A_{2} e^{(\alpha-\beta i) t} \\
& =e^{\alpha t}\left(A_{1} e^{i \beta t}+A_{2} e^{-i \beta t}\right) \\
& =e^{\alpha t}\left[A_{1}(\cos \beta t+i \sin \beta t)+A_{2}(\cos \beta t-i \sin \beta t)\right] \\
& =e^{\alpha t}\left[\left(A_{1}+A_{2}\right) \cos \beta t+\left(A_{1}-A_{2}\right) i \sin \beta t\right] \\
& =e^{\alpha t}\left[A_{5} \cos \beta t+A_{6} \sin \beta t\right]
\end{aligned}
$$

- Case 3. Two (conjugate) complex roots $\left(a_{1}^{2}<4 a_{2}\right)$
ex: $y^{\prime \prime}(t)+2 y^{\prime}(t)+17 y(t)=34, \quad y(0)=3, \quad y^{\prime}(0)=11$

$$
\Rightarrow r^{2}+2 r+17=0 \quad \Rightarrow \quad r=-1 \pm 4 i
$$

$$
\Rightarrow y(t)=e^{-t}\left(A_{5} \cos 4 t+A_{6} \sin 4 t\right)+2
$$

and $y^{\prime}(t)=-e^{-t}\left(A_{5} \cos 4 t+A_{6} \sin 4 t\right)+4 e^{-t}\left(-A_{5} \sin 4 t+A_{6} \cos 4 t\right)$
$\because y(0)=A_{5}+2=3$ and $\quad y^{\prime}(0)=-A_{5}+4 A_{6}=11$

$$
\begin{aligned}
y(t) & =e^{-t}(\cos 4 t+3 \sin 4 t)+2 \\
& =\sqrt{10} e^{-t}\left(\frac{1}{\sqrt{10}} \cos 4 t+\frac{3}{\sqrt{10}} \sin 4 t\right)+2 \\
& =\sqrt{10} e^{-t} \sin (4 t+\phi)+2
\end{aligned}
$$

The Dynamic Stability at Equilibrium

- Case 1. Two distinct real roots

$$
y_{c}=A_{1} e^{r_{1} t}+A_{2} e^{r_{2} t}
$$

- Case 2. Two repeated real roots
$y_{c}=\left(A_{3}+A_{4} t\right) e^{r t}$
- Case 3. Two (conjugate) complex roots
$y_{c}=e^{\alpha t}\left(A_{5} \cos \beta t+A_{6} \sin \beta t\right)$

Differential Equations with a Variable Term

$$
6 t^{2}-t-1=3 a t^{2}+(10 a+3 b) t+(2 a+5 b+3 c)
$$

$$
\Rightarrow a=2, \quad b=-7, \quad c=10
$$

$$
\Rightarrow y_{p}=2 t^{2}-7 t+10 \quad \mathbf{O}
$$

$$
\begin{aligned}
& \text { ex: } y^{\prime \prime}+5 y^{\prime}+3 y=6 t^{2}-t-1 \quad \Rightarrow \quad y_{p} \text { ? } \\
& \begin{array}{rlrl}
y & =a t^{2}+b t+ & c & \ldots \times \mathbf{3} \\
y^{\prime} & = & 2 a t+ & b \\
& \ldots \times \mathbf{5} \\
y^{\prime \prime} & = & & +
\end{array}
\end{aligned}
$$

Differential Equations with a Variable Term

ex: $y^{\prime \prime}+5 y^{\prime}=6 t^{2}-t-1 \quad \Rightarrow \quad y_{p}$?

$$
\begin{array}{rlrlr}
y & = & a t^{2}+\quad b t+ & c & \ldots \times \mathbf{0} \\
y^{\prime} & = & & b & \ldots \times \mathbf{5} \\
y^{\prime \prime} & = & & & + \\
& & & 2 a t & \ldots \times \mathbf{1}
\end{array}
$$

$$
6 t^{2}-t-1=10 a t+(2 a+5 b) \mathbf{X}
$$

$$
\begin{aligned}
& 6 t^{2}-t-1=15 a t^{2}+(6 a+10 b) t+(2 b+5 c) \\
& \Rightarrow \quad y_{p}=\frac{2}{5} t^{3}-\frac{17}{50} t^{2}-\frac{8}{125} t \mathbf{O}
\end{aligned}
$$

$$
\begin{aligned}
& y=a t^{3}+b t^{2}+c t \ldots \times \mathbf{0} \\
& y^{\prime}=3 a t^{2}+2 b t+c \ldots \times 5 \\
& y^{\prime \prime}=\quad+\quad 6 a t+2 b \ldots \times 1
\end{aligned}
$$

Differential Equations with a Variable Term

ex: $y^{\prime \prime}+3 y^{\prime}-4 y=2 e^{-4 t} \quad \Rightarrow \quad y_{p}$?

Differential Equations with a Variable Term

ex: $y^{\prime \prime}+y^{\prime}+3 y=\sin t \quad \Rightarrow \quad y_{p}$?

$$
\begin{aligned}
y & =A_{1} \sin t+A_{2} \cos t \ldots \times \mathbf{3} \\
y^{\prime} & =-A_{2} \sin t+A_{1} \cos t \ldots \times \mathbf{1} \\
y^{\prime \prime} & =-A_{1} \sin t-A_{2} \cos t \ldots \times \mathbf{1} \\
\sin t & =\left(2 A_{1}-A_{2}\right) \sin t+\left(A_{1}+2 A_{2}\right) \cos t \\
\Rightarrow \quad y_{p} & =\frac{2}{5} \sin t-\frac{1}{5} \cos t \mathbf{O}
\end{aligned}
$$

Higher Order Linear Differential Equations

$$
\begin{aligned}
& y^{(n)}(t)+a_{1} y^{(n-1)}(t)+\cdots+a_{n-1} y^{\prime}+a_{n} y=b \\
\Rightarrow & r^{n}+a_{1} r^{n-1}+\cdots+a_{n-1} r+a_{n}=0 \quad \Rightarrow \quad r_{1}, r_{2}, \cdots r_{n}
\end{aligned}
$$

- distinct real roots: $\sum_{i} A_{i} e^{r_{i} t}$
- repeated real roots: $\sum_{j} A_{j} t^{j} e^{r t}$
- conjugate complex roots: $\quad e^{\alpha t}(A \cos \beta t+B \sin \beta t)$
- repeated complex roots: $\quad \sum_{k} t^{k} e^{\alpha t}\left(A_{k} \cos \beta t+B_{k} \sin \beta t\right)$

Higher Order Linear Differential Equations

ex: $y^{(4)}+6 y^{\prime \prime \prime}+14 y^{\prime \prime}+16 y^{\prime}+8 y=24$
$\Rightarrow r^{4}+6 r^{3}+14 r^{2}+16 r+8=0$

$$
\begin{aligned}
& (r+2)^{2}\left(r^{2}+2 r+2\right)=0 \Rightarrow r=-2, \quad-2, \quad-1 \pm i \\
\Rightarrow & y(t)=A_{1} e^{-2 t}+A_{2} t e^{-2 t}+e^{-t}\left(A_{3} \cos t+A_{4} \sin t\right)+3
\end{aligned}
$$

ex: $(2 r+3)^{3}(r-2)\left(r^{2}+r+1\right)^{2}=0$

$$
\begin{aligned}
y_{c} & =A_{1} e^{-1.5 t}+A_{2} t e^{-1.5 t}+A_{3} t^{2} e^{-1.5 t}+A_{4} e^{2 t} \\
& +e^{-1 / 2 t}\left[A_{5} \cos (\sqrt{3} / 2) t+A_{6} \sin (\sqrt{3} / 2) t\right] \\
& +e^{-1 / 2 t} t\left[A_{7} \cos (\sqrt{3} / 2) t+A_{8} \sin (\sqrt{3} / 2) t\right]
\end{aligned}
$$

Convergence and the Routh Theorem

- The real parts of all of the roots of the n th-degree polynomial equation

$$
a_{0} r^{n}+a_{1} r^{n-1}+\cdots+a_{n-1} r+a_{n}=0
$$

are negative if and only if the first n of the following
sequence of determinants $\quad\left|a_{1}\right| ; \quad\left|\begin{array}{cc}a_{1} & a_{3} \\ a_{0} & a_{2}\end{array}\right| ; \quad\left|\begin{array}{ccc}a_{1} & a_{3} & a_{5} \\ a_{0} & a_{2} & a_{4} \\ 0 & a_{1} & a_{3}\end{array}\right|$;
$\left|\begin{array}{cccc}a_{1} & a_{3} & a_{5} & a_{7} \\ a_{0} & a_{2} & a_{4} & a_{6} \\ 0 & a_{1} & a_{3} & a_{5} \\ 0 & a_{0} & a_{2} & a_{4}\end{array}\right| ; \cdots$ all are positive.

Convergence and the Routh Theorem

$$
\begin{array}{ll}
\text { ex: } & r^{4}+6 r^{3}+14 r^{2}+16 r+8=0 \\
& a_{0} \quad a_{1} \quad a_{2} \quad a_{3} \quad a_{4}
\end{array}
$$

$$
\Rightarrow \quad|6|=6 ; \quad\left|\begin{array}{cc}
6 & 16 \\
1 & 14
\end{array}\right|=68 ; \quad\left|\begin{array}{ccc}
6 & 16 & 0 \\
1 & 14 & 8 \\
0 & 6 & 16
\end{array}\right|=800 ;
$$

$$
\left|\begin{array}{cccc}
6 & 16 & 0 & 0 \\
1 & 14 & 8 & 0 \\
0 & 6 & 16 & 0 \\
0 & 1 & 14 & 8
\end{array}\right|=6,400
$$

\Rightarrow The real parts of all of the roots are negative! (stable)

Convergence and the Routh Theorem

ex:

$$
\begin{aligned}
& \begin{array}{ccccccc}
8 r^{8}+36 r^{7}+46 r^{6}-41 r^{5}-222 r^{4}-367 r^{3}-342 r^{2}-189 r-54=0 \\
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & a_{6}
\end{array} a_{7} \quad a_{8}=0 . \\
& \Rightarrow \quad|36|=36 ; \quad\left|\begin{array}{cc}
36 & -41 \\
8 & 46
\end{array}\right|=1,984 ; \quad\left|\begin{array}{ccc}
36 & -41 & -367 \\
8 & 46 & -222 \\
0 & 36 & -41
\end{array}\right|=100,672 \text {; } \\
& \left|\begin{array}{cccc}
36 & -41 & -367 & -189 \\
8 & 46 & -222 & -342 \\
0 & 36 & -41 & -367 \\
0 & 8 & 46 & -222
\end{array}\right|=4,561,920 ; \ldots
\end{aligned}
$$

Difference Equations

refer to textbook
Ch. 17 Discrete Time: First-Order Difference Equations
Ch. 18 Higher-Order Difference Equations

First-Order Difference Equations

- $\Delta y_{t} \equiv y_{t+1}-y_{t}$ ex: $\Delta y_{t}=2$

$$
\Rightarrow \quad y_{t+1}-y_{t}=2 \text { or } y_{t+1}=y_{t}+2
$$

Iterative Method

$$
\begin{aligned}
y_{1} & =y_{0}+2 \\
y_{2} & =y_{1}+2=\left(y_{0}+2\right)+2=y_{0}+2(2) \\
y_{3} & =y_{2}+2=\left(y_{0}+2(2)\right)+2=y_{0}+3(2) \\
& \vdots \\
y_{t} & =y_{0}+t(2)=y_{0}+2 t
\end{aligned}
$$

First-Order Difference Equations

ex: $\Delta y_{t}=-0.1 y_{t} \quad \Rightarrow \quad y_{t+1}=0.9 y_{t}$

Iterative Method

$$
\begin{aligned}
y_{1} & =0.9 y_{0} \\
y_{2} & =0.9 y_{1}=(0.9)^{2} y_{0} \\
y_{3} & =0.9 y_{2}=(0.9)^{3} y_{0} \\
& \vdots \\
y_{t} & =(0.9)^{t} y_{0}
\end{aligned}
$$

First-Order Difference Equations

- $y_{t+1}+a y_{t}=c \quad$ complete equation: $\quad y_{t+1}+a y_{t}=c$

$$
\text { Try } y_{t}=k \quad \Rightarrow \quad y_{p}=\frac{c}{1+a}(a \neq-1)
$$

reduced equation: $\quad y_{t+1}+a y_{t}=0$

$$
y_{t}=A b^{t} \Rightarrow y_{c}=A(-a)^{t}
$$

$$
\Rightarrow y_{t}=A(-a)^{t}+\frac{c}{1+a}=\left[y_{0}-\frac{c}{1+a}\right](-a)^{t}+\frac{c}{1+a}
$$

ex: $y_{t+1}-5 y_{t}=1$
$\Rightarrow y_{t}=A(5)^{t}-\frac{1}{4}=\left(y_{0}+\frac{1}{4}\right) \cdot 5^{t}-\frac{1}{4}$

The Cobweb Model

- Consider a situation in which the producer's output decision must be made one period in advance of the actual date.

$$
\begin{aligned}
\Rightarrow Q_{d t} & =\alpha-\beta P_{t} \quad(\alpha, \beta>0) \\
Q_{s t} & =-\gamma+\delta P_{t-1} \quad(\gamma, \delta>0)
\end{aligned}
$$

$\Rightarrow \beta P_{t}+\delta P_{t-1}=\alpha+\gamma \quad$ or $\quad P_{t+1}+\frac{\delta}{\beta} P_{t}=\frac{\alpha+\gamma}{\beta}$
$\Rightarrow P_{t}=\left(P_{0}-\frac{\alpha+\gamma}{\beta+\delta}\right)\left(\frac{-\delta}{\beta}\right)^{t}+\frac{\alpha+\gamma}{\beta+\delta}$
explosive
\Rightarrow uniform oscillation if $\delta=\beta$
damped

The Cobweb Model

2nd-Order Difference Equations

$$
y_{t+2}+a_{1} y_{t+1}+a_{2} y_{t}=c \text { complete equation }
$$

1. Look for y_{p}
ex: $y_{t+2}-3 y_{t+1}+4 y_{t}=6$

$$
\operatorname{try} \underset{y_{t}}{\Rightarrow}=k \quad y_{p}=3 \mathbf{O}
$$

ex: $y_{t+2}+y_{t+1}-2 y_{t}=12$

$$
\begin{array}{ll}
\operatorname{try} \underset{y_{t}}{\Rightarrow}=k & 0=12 \quad \mathbf{X} \\
\text { try } \underset{y_{t}}{\Longrightarrow}=k t & y_{p}=4 t \quad \mathbf{O}
\end{array}
$$

ex: $y_{t+2}-2 y_{t+1}+y_{t}=5$

2nd-Order Difference Equations

2. Solve y_{c}
$y_{t+2}+a_{1} y_{t+1}+a_{2} y_{t}=0$ reduced equation

- Let $y_{t}=A b^{t}$, so that $y_{t+2}=A b^{t+2}$ and $y_{t+1}=A b^{t+1}$
$\Rightarrow A b^{t}\left(b^{2}+a_{1} b+a_{2}\right)=0$, we call $b^{2}+a_{1} b+a_{2}=0$ as a characteristic (or auxiliary) equation. (Can $A=0$ happen?)
$\Rightarrow b_{1}, b_{2}=\frac{-a_{1} \pm \sqrt{a_{1}{ }^{2}-4 a_{2}}}{2} \Rightarrow y_{1}=A_{1} b_{1}{ }^{t}, \quad y_{2}=A_{2} b_{2}{ }^{t}$
$\Rightarrow y_{c}=y_{1}+y_{2}=A_{1} b_{1}^{t}+A_{2} b_{2}^{t}$

2nd-Order Difference Equations

- Case 1. Two distinct real roots $\left(a_{1}^{2}>4 a_{2}\right)$
ex: $y_{t+2}+y_{t+1}-2 y_{t}=12$
$\Rightarrow b^{2}+b-2=(b+2)(b-1)=0 \quad \Rightarrow \quad b_{1}=1, b_{2}=-2$
$\Rightarrow y_{t}=y_{c}+y_{p}=A_{1}(1)^{t}+A_{2}(-2)^{t}+4 t$
If we let $y_{0}=4$ and $y_{1}=5$, then
$A_{1}+A_{2}=4$ and $A_{1}-2 A_{2}+4=5$
$\Rightarrow A_{1}=3, A_{2}=1$, and $y_{t}=3+(-2)^{t}+4 t$
- Case 2. Two repeated real roots $\left(a_{1}^{2}=4 a_{2} \quad \Rightarrow \quad b=-\frac{a_{1}}{2}\right)$
ex: $y_{t+2}+6 y_{t+1}+9 y_{t}=4$
$\Rightarrow b^{2}+6 b+9=(b+3)^{2}=0 \quad \Rightarrow \quad b_{1}=b_{2}=-3$
$\Rightarrow y_{c}=A_{1}(-3)^{t}+A_{2}(-3)^{t}=A_{3}(-3)^{t}$
(Only one constant can be identified!)
If we let $y_{c}=A_{4} t b^{t} \quad$ (Can it be another solution?)
then $y_{t}=\left(A_{3}+A_{4} t\right)(-3)^{t}+\frac{1}{4}$
- Case 3. Two (conjugate) complex roots $\left(a_{1}^{2}<4 a_{2}\right)$

$$
\begin{aligned}
& b_{1}, b_{2}= \\
& \begin{aligned}
y_{c} & =\frac{-a_{1} \pm \sqrt{4 a_{2}-a_{1}^{2}} i}{2}=\alpha \pm \beta i \\
& =A_{1}(\alpha+\beta i)^{t}+A_{2}(\alpha-\beta i)^{t} \\
& \left.=R^{t}\left((\cos \theta t+i \sin \theta t)+A_{2} R^{t}(\cos \theta t-i \sin \theta t) \cos \theta t+\left(A_{1}-A_{2}\right) i \sin \theta t\right)\right] \\
& =R^{t}\left(A_{5} \cos \theta t+A_{6} \sin \theta t\right)
\end{aligned}
\end{aligned}
$$

- Case 3. Two (conjugate) complex roots $\left(a_{1}^{2}<4 a_{2}\right)$
ex: $y_{t+2}+\frac{1}{4} y_{t}=5 \quad \Rightarrow \quad y_{p}=4$

$$
b^{2}+\frac{1}{4}=0 \quad \Rightarrow \quad b= \pm \frac{1}{2} i=\frac{1}{2}\left(\cos \frac{\pi}{2} \pm i \sin \frac{\pi}{2}\right)
$$

$\Rightarrow y_{t}=\left(\frac{1}{2}\right)^{t}\left(A_{5} \cos \frac{\pi}{2} t+A_{6} \sin \frac{\pi}{2} t\right)+4$
ex: $y_{t+2}-4 y_{t+1}+16 y_{t}=0 \quad \Rightarrow \quad y_{p}=0$
$b^{2}-4 b+16=0 \quad \Rightarrow \quad b=2 \pm 2 \sqrt{3} i=4\left(\cos \frac{\pi}{3} \pm i \sin \frac{\pi}{3}\right)$
$\Rightarrow y_{t}=4^{t}\left(A_{5} \cos \frac{\pi}{3} t+A_{6} \sin \frac{\pi}{3} t\right)$

The Convergence of the Time Path

- Case 1. Two distinct real roots

$$
y_{c}=A_{1} b_{1}^{t}+A_{2} b_{2}^{t}
$$

- Case 2. Two repeated real roots
$y_{c}=\left(A_{3}+A_{4} t\right) b^{t}$
- Case 3. Two (conjugate) complex roots

$$
y_{c}=R^{t}\left(A_{5} \cos \theta t+A_{6} \sin \theta t\right)
$$

oscillatory

Difference Equations with a Variable Term

ex: $y_{t+2}+y_{t+1}-3 y_{t}=7^{t} \quad \Rightarrow \quad y_{p}$?

$$
\begin{array}{rlrl}
y_{t} & =B\left(7^{t}\right) & \ldots \times-\mathbf{3} \\
y_{t+1} & =B\left(7^{t+1}\right)=7 B\left(7^{t}\right) & \ldots \times \mathbf{1} \\
y_{t+2} & =B\left(7^{t+2}\right)=49 B\left(7^{t}\right) & & \ldots \times \mathbf{1} \\
\hline 7^{t} & =53 B\left(7^{t}\right) &
\end{array}
$$

$$
\Rightarrow B=\frac{1}{53} \quad \Rightarrow \quad y_{p}=\frac{1}{53} 7^{t} \quad \mathbf{O}
$$

Difference Equations with a Variable Term

ex: $y_{t+2}-5 y_{t+1}-6 y_{t}=2 \cdot 6^{t} \quad \Rightarrow \quad y_{p}$?

$$
\begin{align*}
y_{t} & =B\left(6^{t}\right) \\
y_{t+1} & =B\left(6^{t+1}\right)=6 B\left(6^{t}\right) \\
y_{t+2} & =B\left(6^{t+2}\right)=36 B\left(6^{t}\right) \\
\hline 2 \cdot 6^{t} & =0 \mathbf{X} \\
y_{t} & =B t\left(6^{t}\right) \\
y_{t+1} & =B(t+1)\left(6^{t+1}\right)=6 B(t+1)\left(6^{t}\right) \\
y_{t+2} & =B(t+2)\left(6^{t+2}\right)=36 B(t+2)\left(6^{t}\right) \\
2 \cdot 6^{t} & =42 B\left(6^{t}\right) \quad \Rightarrow \quad y_{p}=\frac{1}{21} t\left(6^{t}\right) \mathbf{O}
\end{align*}
$$

Difference Equations with a Variable Term

ex: $y_{t+2}+5 y_{t+1}+2 y_{t}=t^{2} \quad \Rightarrow \quad y_{p}$?

$$
\begin{array}{rlrl}
y_{t} & =a t^{2}+b t+c & \ldots \times \mathbf{2} \\
y_{t+1} & =a(t+1)^{2}+b(t+1)+c & \\
& =a t^{2}+(2 a+b) t+(a+b+c) & \ldots \times \mathbf{5} \\
y_{t+2} & =a(t+2)^{2}+b(t+2)+c & \\
& =a t^{2}+(4 a+b) t+(4 a+2 b+c) & \cdots \times \mathbf{1} \\
\hline t^{2} & =8 a t^{2}+(14 a+8 b) t+(9 a+7 b+8 c) & \\
\Rightarrow a=\frac{1}{8}, & b=\frac{-7}{32}, c=\frac{13}{256} \quad \Rightarrow \quad y_{p}=\frac{1}{8} t^{2}-\frac{7}{32} t+\frac{13}{256}
\end{array}
$$

ex: $y_{t+2}+5 y_{t+1}+2 y_{t}=3^{t}+2 t+4 t^{2}$

Higher Order Linear Difference Equations

$$
\begin{aligned}
& y_{t+n}+a_{1} y_{t+n-1}+\cdots+a_{n-1} y_{t+1}+a_{n} y_{t}=b \\
\Rightarrow & b^{n}+a_{1} b^{n-1}+\cdots+a_{n-1} b+a_{n}=0 \quad \Rightarrow \quad b_{1}, b_{2}, \cdots b_{n}
\end{aligned}
$$

- distinct real roots: $\sum_{i} A_{i} b_{i}{ }^{t}$
- repeated real roots: $\sum_{j} A_{j} t^{j} b^{t}$
- conjugate complex roots: $\quad R^{t}(A \cos \theta t+B \sin \theta t)$
- repeated complex roots: $\sum_{k} t^{k} R^{t}\left(A_{k} \cos \theta t+B_{k} \sin \theta t\right)$

Higher Order Linear Difference Equations

ex: $y_{t+3}-\frac{7}{8} y_{t+2}+\frac{1}{8} y_{t+1}+\frac{1}{32} y_{t}=9$

$$
\Rightarrow b^{3}-\frac{7}{8} b^{2}+\frac{1}{8} b+\frac{1}{32}=0
$$

$$
(2 b-1)^{2}(8 b+1)=0 \Rightarrow b=\frac{1}{2}, \frac{1}{2},-\frac{1}{8}
$$

$$
\Rightarrow y_{t}=A_{1}\left(\frac{1}{2}\right)^{t}+A_{2} t\left(\frac{1}{2}\right)^{t}+A_{3}\left(\frac{-1}{8}\right)^{t}+32
$$

ex: $y_{t+4}+6 y_{t+3}+14 y_{t+2}+16 y_{t+1}+8 y_{t}=24$

$$
\Rightarrow b^{4}+6 b^{3}+14 b^{2}+16 b+8=0
$$

$$
(b+2)^{2}\left(b^{2}+2 b+2\right)=0 \Rightarrow b=-2,-2,-1 \pm i
$$

$$
\Rightarrow y_{t}=A_{1}(-2)^{t}+A_{2} t(-2)^{t}+(\sqrt{2})^{t}\left(A_{3} \cos \frac{3 \pi}{4} t+A_{4} \sin \frac{3 \pi}{4} t\right)+\frac{8}{15}
$$

Convergence and the Schur Theorem

- The roots of the n th-degree polynomial equation

$$
a_{0} b^{n}+a_{1} b^{n-1}+\cdots+a_{n-1} b+a_{n}=0
$$

will be less than unity in absolute value if and only if the following
n determinants

$$
\left.\begin{aligned}
& \Delta_{1}=\left|\begin{array}{ccc}
a_{0} & a_{n} \\
\hdashline a_{n} & a_{0}
\end{array}\right| ; \quad \Delta_{2}=\left|\begin{array}{ccccc}
a_{0} & 0 & a_{n} & a_{n-1} \\
a_{1} & a_{0} & 0 & a_{n} \\
a_{n} & 0 & a_{0} & a_{1} \\
a_{n-1} & a_{n}
\end{array}\right| ; 0_{0} a_{0}
\end{aligned} \right\rvert\, ; \quad \ldots
$$

Convergence and the Schur Theorem

ex: $\quad b^{2}+3 b+2=0$
$\Rightarrow \Delta_{1}=\left|\begin{array}{cc}1 & 2 \\ 2 & 1\end{array}\right|=-3 ; \quad \Delta_{2}=\left|\begin{array}{cc:cc}1 & 0 & 2 & 3 \\ 3 & 1 & 0 & 2 \\ 2 & 0 & 1 & 3 \\ 3 & 2 & 0 & 1\end{array}\right| \quad \Rightarrow$ divergent!
ex: $\quad 6 b^{2}+b-1=0$

a_{0}	a_{1}
a_{2}	
$\Delta_{1}=\mid$	
-1	6

1 \& 6 \& 0 \& -1

\hdashline-1 \& 0 \& 6 \& 1

1 \& -1 \& 0 \& 6\end{array}\right|=1176\right.\)
\Rightarrow All roots are less than unity in absolute value! (convergent)

Simultaneous Equations

refer to textbook
Ch. 19 Simultaneous Differential and Difference Equations

Transformation of a Higher-Order Dynamic Equation

ex:

$$
y_{t+3}+a_{1} y_{t+2}+a_{2} y_{t+1}+a_{3} y_{t}=c
$$

$$
\left\{\begin{array}{rrrrl}
z_{t+1} & & +a_{1} z_{t} & +a_{2} x_{t} & +a_{3} y_{t}
\end{array}=c\right.
$$

ex:

$$
y^{(3)}(t)+a_{1} y^{\prime \prime}(t)+a_{2} y^{\prime}(t)+a_{3} y(t)=c
$$

$$
\left\{\begin{array}{cccc}
z^{\prime}(t)+a_{1} x^{\prime}(t) & & +a_{2} x(t)+a_{3} y(t) & =c \\
x^{\prime}(t) & -z(t) & & \\
& y^{\prime}(t) & & \\
& & =x(t) & \\
& & =0
\end{array}\right.
$$

Simultaneous Difference Equations

ex: x_{t+1}

$$
+6 x_{t}+9 y_{t}=4
$$

$$
y_{t+1}-x_{t}=0
$$

$$
\Rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{t+1} \\
y_{t+1}
\end{array}\right]+\left[\begin{array}{cc}
6 & 9 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0
\end{array}\right]
$$

1. Guess the particular integrals: x_{p} and y_{p} (Try constants)

$$
\begin{aligned}
\Rightarrow\left[\begin{array}{l}
x_{p} \\
y_{p}
\end{array}\right] & =\left[\begin{array}{cc}
7 & 9 \\
-1 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
4 \\
0
\end{array}\right] \\
& =\frac{1}{16}\left[\begin{array}{cc}
1 & -9 \\
1 & 7
\end{array}\right]\left[\begin{array}{l}
4 \\
0
\end{array}\right]=\left[\begin{array}{l}
0.25 \\
0.25
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{t+1} \\
y_{t+1}
\end{array}\right]+\left[\begin{array}{cc}
6 & 9 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

2. Solve the complementary functions: x_{c} and y_{c}

$$
\begin{aligned}
& \Rightarrow \quad \text { Let } x_{t}=m b^{t} \text { and } y_{t}=n b^{t} \\
\Rightarrow & {\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
m b^{t+1} \\
n b^{t+1}
\end{array}\right]+\left[\begin{array}{cc}
6 & 9 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
m b^{t} \\
n b^{t}
\end{array}\right] } \\
& =\left(b\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
6 & 9 \\
-1 & 0
\end{array}\right]\right)\left[\begin{array}{c}
m \\
n
\end{array}\right] b^{t}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow & {\left[\begin{array}{cc}
b+6 & 9 \\
-1 & b
\end{array}\right]\left[\begin{array}{c}
m \\
n
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

$\Rightarrow\left|\begin{array}{cc}b+6 & 9 \\ -1 & b\end{array}\right|=0=b^{2}+6 b+9=(b+3)^{2}$
$\Rightarrow b_{1}=b_{2}=-3, \quad\left[\begin{array}{cc}3 & 9 \\ -1 & -3\end{array}\right]\left[\begin{array}{c}m \\ n\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \Rightarrow m: n=-3: 1$
$\Rightarrow\left[\begin{array}{l}x_{c} \\ y_{c}\end{array}\right]=\left[\begin{array}{c}-3 A_{3}(-3)^{t}-3 A_{4} t(-3)^{t} \\ A_{3}(-3)^{t}+A_{4} t(-3)^{t}\end{array}\right]$
and $\left[\begin{array}{c}x_{t} \\ y_{t}\end{array}\right]=\left[\begin{array}{c}-3 A_{3}(-3)^{t}-3 A_{4} t(-3)^{t}+0.25 \\ A_{3}(-3)^{t}+A_{4} t(-3)^{t}+0.25\end{array}\right]$
ex: $x_{t+1} \quad-x_{t}-1 / 3 y_{t}=-1$

$$
\begin{aligned}
& x_{t+1}+y_{t+1}-1 / 6 y_{t}=17 / 2 \\
\Rightarrow & {\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{t+1} \\
y_{t+1}
\end{array}\right]+\left[\begin{array}{cc}
-1 & -1 / 3 \\
0 & -1 / 6
\end{array}\right]\left[\begin{array}{c}
x_{t} \\
y_{t}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
17 / 2
\end{array}\right] }
\end{aligned}
$$

1. Guess the particular integrals: x_{p} and y_{p} (Try constants)

$$
\begin{aligned}
\Rightarrow\left[\begin{array}{l}
x_{p} \\
y_{p}
\end{array}\right] & =\left[\begin{array}{cc}
0 & -1 / 3 \\
1 & 5 / 6
\end{array}\right]^{-1}\left[\begin{array}{c}
-1 \\
17 / 2
\end{array}\right] \\
& =\frac{1}{1 / 3}\left[\begin{array}{cc}
5 / 6 & 1 / 3 \\
-1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
17 / 2
\end{array}\right]=\left[\begin{array}{l}
6 \\
3
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{t+1} \\
y_{t+1}
\end{array}\right]+\left[\begin{array}{cc}
-1 & -1 / 3 \\
0 & -1 / 6
\end{array}\right]\left[\begin{array}{l}
x_{t} \\
y_{t}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

2. Solve the complementary functions: x_{c} and y_{c}

$$
\begin{aligned}
& \Rightarrow \quad \text { Let } x_{t}=m b^{t} \text { and } y_{t}=n b^{t} \\
\Rightarrow & {\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{c}
m b^{t+1} \\
n b^{t+1}
\end{array}\right]+\left[\begin{array}{cc}
-1 & -1 / 3 \\
0 & -1 / 6
\end{array}\right]\left[\begin{array}{c}
m b^{t} \\
n b^{t}
\end{array}\right] } \\
& =\left(b\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]+\left[\begin{array}{cc}
-1 & -1 / 3 \\
0 & -1 / 6
\end{array}\right]\right)\left[\begin{array}{c}
m \\
n
\end{array}\right] b^{t}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow & {\left[\begin{array}{cc}
b-1 & -1 / 3 \\
b & b-1 / 6
\end{array}\right]\left[\begin{array}{c}
m \\
n
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{cc}
b-1 & -1 / 3 \\
b & b-1 / 6
\end{array}\right|=0=b^{2}-\frac{5}{6} b+\frac{1}{6}=\left(b-\frac{1}{2}\right)\left(b-\frac{1}{3}\right) \\
& \Rightarrow b_{1}=1 / 2, \quad\left[\begin{array}{cc}
-1 / 2 & -1 / 3 \\
1 / 2 & 1 / 3
\end{array}\right]\left[\begin{array}{c}
m \\
n
\end{array}\right]=0 \quad \Rightarrow \quad m_{1}: n_{1}=2:-3 \\
& \\
& b_{2}=1 / 3, \quad\left[\begin{array}{cc}
-2 / 3 & -1 / 3 \\
1 / 3 & 1 / 6
\end{array}\right]\left[\begin{array}{c}
m \\
n
\end{array}\right]=0 \quad \Rightarrow \quad m_{2}: n_{2}=1:-2 \\
& \Rightarrow \quad\left[\begin{array}{c}
x_{c} \\
y_{c}
\end{array}\right]=\left[\begin{array}{c}
2 A_{1}\left(\frac{1}{2}\right)^{t}+A_{2}\left(\frac{1}{3}\right)^{t} \\
-3 A_{1}\left(\frac{1}{2}\right)^{t}-2 A_{2}\left(\frac{1}{3}\right)^{t}
\end{array}\right] \\
& \text { and }\left[\begin{array}{c}
x_{t} \\
y_{t}
\end{array}\right]=\left[\begin{array}{c}
2 A_{1}\left(\frac{1}{2}\right)^{t}+A_{2}\left(\frac{1}{3}\right)^{t}+6 \\
-3 A_{1}\left(\frac{1}{2}\right)^{t}-2 A_{2}\left(\frac{1}{3}\right)^{t}+3
\end{array}\right] \\
&
\end{aligned}
$$

Simultaneous Differential Equations

ex: $x^{\prime}+2 y^{\prime}+2 x+5 y=77$

$$
y^{\prime}+x+4 y=61
$$

$$
\Rightarrow\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]+\left[\begin{array}{ll}
2 & 5 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
77 \\
61
\end{array}\right]
$$

1. Guess the particular integrals: x_{p} and y_{p} (Try constants)

$$
\begin{aligned}
\Rightarrow\left[\begin{array}{l}
x_{p} \\
y_{p}
\end{array}\right] & =\left[\begin{array}{ll}
2 & 5 \\
1 & 4
\end{array}\right]^{-1}\left[\begin{array}{l}
77 \\
61
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{cc}
4 & -5 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
77 \\
61
\end{array}\right]=\left[\begin{array}{c}
1 \\
15
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]+\left[\begin{array}{ll}
2 & 5 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

2. Solve the complementary functions: x_{c} and y_{c}

$$
\begin{aligned}
& \Rightarrow \quad \text { Let } x(t)=m e^{r t} \text { and } y(t)=n e^{r t} \\
\Rightarrow & {\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
r m e^{r t} \\
r n e^{r t}
\end{array}\right]+\left[\begin{array}{ll}
2 & 5 \\
1 & 4
\end{array}\right]\left[\begin{array}{c}
m e^{r t} \\
n e^{r t}
\end{array}\right] } \\
& =\left(\begin{array}{ll}
r & \left.\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]+\left[\begin{array}{ll}
2 & 5 \\
1 & 4
\end{array}\right]\right)\left[\begin{array}{c}
m \\
n
\end{array}\right] e^{r t}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow & {\left[\begin{array}{cc}
r+2 & 2 r+5 \\
1 & r+4
\end{array}\right]\left[\begin{array}{l}
m \\
n
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{array}, \$\right. \text {. }
\end{aligned}
$$

$$
\left.\begin{array}{l}
\Rightarrow\left|\begin{array}{cc}
r+2 & 2 r+5 \\
1 & r+4
\end{array}\right|=0=r^{2}+4 r+3=(r+1)(r+3) \\
\Rightarrow r_{1}=-1, \quad\left[\begin{array}{ll}
1 & 3 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
m \\
n
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow m_{1}: n_{1}=-3: 1 \\
\\
r_{2}=-3, \quad\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
m \\
n
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow m_{2}: n_{2}=-1: 1 \\
\Rightarrow \\
\text { and }\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]=\left[\begin{array}{c}
-3 A_{1} e^{-t}-A_{2} e^{-3 t} \\
A_{1} e^{-t}+A_{2} e^{-3 t}
\end{array}\right] \\
y(t)
\end{array}\right]=\left[\begin{array}{c}
-3 A_{1} e^{-t}-A_{2} e^{-3 t}+1 \\
A_{1} e^{-t}+A_{2} e^{-3 t}+15
\end{array}\right] \quad\left[\begin{array}{l}
x(t)
\end{array}\right.
$$

Two Variable Phase Diagrams

$$
\begin{aligned}
x^{\prime}+2 y^{\prime}+2 x+5 y & =77 \quad \Rightarrow \quad x^{\prime} \\
y^{\prime}+x+4 y & =61
\end{aligned} \quad \begin{aligned}
& y^{\prime}
\end{aligned}=-x-4 y+61 \text { }
$$

ex: $x^{\prime} \quad-2 x-y=-4$

$$
\begin{gathered}
y^{\prime}-2 x+y=0 \\
\Rightarrow\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]+\left[\begin{array}{cc}
-2 & -1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
-4 \\
0
\end{array}\right]
\end{gathered}
$$

1. Guess the particular integrals:

$$
\begin{aligned}
\Rightarrow\left[\begin{array}{l}
x_{p} \\
y_{p}
\end{array}\right] & =\left[\begin{array}{cc}
-2 & -1 \\
-2 & 1
\end{array}\right]^{-1}\left[\begin{array}{c}
-4 \\
0
\end{array}\right] \\
& =\frac{1}{-4}\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]\left[\begin{array}{c}
-4 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]+\left[\begin{array}{cc}
-2 & -1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

2. Solve the complementary functions:
$\Rightarrow\left(r\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}-2 & -1 \\ -2 & 1\end{array}\right]\right)\left[\begin{array}{l}m \\ n\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}r-2 & -1 \\ -2 & r+1\end{array}\right]\left[\begin{array}{l}m \\ n\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\Rightarrow\left|\begin{array}{cc}r-2 & -1 \\ -2 & r+1\end{array}\right|=0=r^{2}-r-4$

$$
\begin{aligned}
& \Rightarrow r_{1}=\frac{1+\sqrt{17}}{2}, \quad\left[\begin{array}{cc}
\frac{\sqrt{17}-3}{2} & -1 \\
-2 & \frac{\sqrt{17}+3}{2}
\end{array}\right]\left[\begin{array}{l}
m \\
n
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Rightarrow \quad m_{1}: n_{1}=2:(\sqrt{17}-3) \\
& r_{2}=\frac{1-\sqrt{17}}{2}, \quad\left[\begin{array}{cc}
\frac{-\sqrt{17}-3}{2} & -1 \\
-2 & \frac{-\sqrt{17}+3}{2}
\end{array}\right]\left[\begin{array}{l}
m \\
n
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \Rightarrow \quad m_{2}: n_{2}=-2:(\sqrt{17}+3)
\end{aligned} \begin{aligned}
& \Rightarrow\left[\begin{array}{l}
x_{c} \\
y_{c}
\end{array}\right]=\left[\begin{array}{l}
2 A_{1} e^{\frac{1+\sqrt{17}}{2} t}-2 A_{2} e^{\frac{1-\sqrt{17}}{2} t} \\
\left.(\sqrt{17}-3) A_{1} e^{\frac{1+\sqrt{17}}{2} t}+(\sqrt{17}+3) A_{2} e^{\frac{1-\sqrt{17}}{2} t}\right]
\end{array}\right. \\
& \text { and }\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=\left[\begin{array}{r}
2 A_{1} e^{\frac{1+\sqrt{17}}{2} t}-2 A_{2} e^{\frac{1-\sqrt{17}}{2} t}+1 \\
(\sqrt{17}-3) A_{1} e^{\frac{1+\sqrt{17}}{2} t}+(\sqrt{17}+3) A_{2} e^{\frac{1-\sqrt{17}}{2} t}+2
\end{array}\right]
\end{aligned}
$$

$$
\begin{array}{rlrl}
x^{\prime} \quad-2 x-y & =-4 \quad \Rightarrow \quad x^{\prime} & =2 x+y-4 \\
y^{\prime}-2 x+y & =0 & & y^{\prime}
\end{array}=2 x-y \text { a }
$$

ex: $x^{\prime} \quad-x+y=2$

$$
y^{\prime}-x-y=4
$$

$\Rightarrow\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]+\left[\begin{array}{cc}-1 & 1 \\ -1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 \\ 4\end{array}\right]$

1. Guess the particular integrals:
$\Rightarrow\left[\begin{array}{l}x_{p} \\ y_{p}\end{array}\right]=\left[\begin{array}{cc}-1 & 1 \\ -1 & -1\end{array}\right]^{-1}\left[\begin{array}{l}2 \\ 4\end{array}\right]=\left[\begin{array}{l}-3 \\ -1\end{array}\right]$
2. Solve the complementary functions:
$\Rightarrow\left(r\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}-1 & 1 \\ -1 & -1\end{array}\right]\right)\left[\begin{array}{l}m \\ n\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}r-1 & 1 \\ -1 & r-1\end{array}\right]\left[\begin{array}{l}m \\ n\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{cc}
r-1 & 1 \\
-1 & r-1
\end{array}\right|=0=r^{2}-2 r+2 \\
& \Rightarrow r_{1}=1+i, \quad\left[\begin{array}{cc}
i & 1 \\
-1 & i
\end{array}\right]\left[\begin{array}{c}
m \\
n
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow m_{1}: n_{1}=1:-i \\
& r_{2}=1-i, \quad\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right]\left[\begin{array}{c}
m \\
n
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow m_{2}: n_{2}=1: i \\
& \Rightarrow {\left[\begin{array}{c}
x_{c} \\
y_{c}
\end{array}\right]=\left[\begin{array}{c}
A_{1} e^{(1+i) t}+A_{2} e^{(1-i) t} \\
-A_{1} i e^{(1+i) t}+A_{2} i e^{(1-i) t}
\end{array}\right] } \\
& \quad=e^{t}\left[\begin{array}{c}
A_{1}(\cos t+i \sin t)+A_{2}(\cos t-i \sin t) \\
-A_{1} i(\cos t+i \sin t)+A_{2} i(\cos t-i \sin t)
\end{array}\right] \\
&=e^{t}\left[\begin{array}{c}
\left(A_{1}+A_{2}\right) \cos t+\left(A_{1}-A_{2}\right) i \sin t \\
-\left(A_{1}-A_{2}\right) i \cos t+\left(A_{1}+A_{2}\right) \sin t
\end{array}\right]
\end{aligned}
$$

$\Rightarrow\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]=\left[\begin{array}{c}e^{t}\left(A_{5} \cos t+A_{6} \sin t\right)-3 \\ e^{t}\left(-A_{6} \cos t+A_{5} \sin t\right)-1\end{array}\right]$

- $x^{\prime}=x-y+2, \quad y^{\prime}=x+y+4$
- $(-2.9,-1)$
- $(-3.1,-1)$

Six Types of Equilibrium

- Given the auxiliary equation $a r^{2}+b r+c=0$, one may determine the type of equilibrium with information from
- the discriminant: $D=b^{2}-4 a c$
- the sum of roots: $r_{1}+r_{2}=-b / a$
- the product of roots: $r_{1} r_{2}=c / a$

$D \geq 0$ real	$D<0$ conjugate complex
$r_{1}+r_{2}>0 \quad r_{1} r_{2}>0$	$r_{1}+r_{2}>0$
unstable node	unstable focus
$r_{1}+r_{2}<0 \quad r_{1} r_{2}>0$	$r_{1}+r_{2}<0$
stable node	stable focus
$r_{1}+r_{2} \gtreqless 0 \quad r_{1} r_{2}<0$	$r_{1}+r_{2}=0$
saddle point	vortex

Linearization of a Nonlinear System

- Given the autonomous system $x^{\prime}=f(x, y)$ and $y^{\prime}=g(x, y)$, an equilibrium point (\bar{x}, \bar{y}) must satisfy $f(\bar{x}, \bar{y})=g(\bar{x}, \bar{y})=0$.
- The 1st-degree (linear) Taylor expansion around (\bar{x}, \bar{y}) gives

$$
\begin{aligned}
& x^{\prime}=f(x, y)=f(\bar{x}, \bar{y})+f_{x}(\bar{x}, \bar{y})(x-\bar{x})+f_{y}(\bar{x}, \bar{y})(y-\bar{y}) \\
& y^{\prime}=g(x, y)=g(\bar{x}, \bar{y})+g_{x}(\bar{x}, \bar{y})(x-\bar{x})+g_{y}(\bar{x}, \bar{y})(y-\bar{y})
\end{aligned}
$$

Or

$$
\begin{aligned}
x^{\prime}-f_{x}(\bar{x}, \bar{y}) x-f_{y}(\bar{x}, \bar{y}) y & =-f_{x}(\bar{x}, \bar{y}) \bar{x}-f_{y}(\bar{x}, \bar{y}) \bar{y} \\
y^{\prime}-g_{x}(\bar{x}, \bar{y}) x-g_{y}(\bar{x}, \bar{y}) y & =-g_{x}(\bar{x}, \bar{y}) \bar{x}-g_{y}(\bar{x}, \bar{y}) \bar{y}
\end{aligned}
$$

\Rightarrow the reduced equations in matrix notation

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]-\left[\begin{array}{ll}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right]_{(\bar{x}, \bar{y})}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Local Stability Analysis

- The auxiliary equation

$$
\left|\begin{array}{cc}
r-f_{x} & -f_{y} \\
-g_{x} & r-g_{y}
\end{array}\right|=r^{2}-\left(f_{x}+g_{y}\right) r+\left(f_{x} g_{y}-f_{y} g_{x}\right)=0
$$

- Denote

$$
J_{E}=\left[\begin{array}{ll}
f_{x} & f_{y} \\
g_{x} & g_{y}
\end{array}\right]_{(\bar{x}, \bar{y})}
$$

then

$$
\begin{aligned}
r_{1}+r_{2} & =\operatorname{tr}\left(J_{E}\right) \\
r_{1} r_{2} & =\operatorname{det}\left(J_{E}\right) \\
D & =\operatorname{tr}\left(J_{E}\right)^{2}-4 \cdot \operatorname{det}\left(J_{E}\right)
\end{aligned}
$$

Local Stability Analysis

ex:

$$
\begin{aligned}
& x^{\prime}=x y-2 \\
& y^{\prime}=2 x-y
\end{aligned}
$$

ex:

$$
\begin{aligned}
x^{\prime} & =x^{2}-y \\
y^{\prime} & =1-y
\end{aligned}
$$

ex:

$$
\begin{aligned}
& x^{\prime}=x-y+2 \\
& y^{\prime}=x+y+4
\end{aligned}
$$

Optimal Control Theory

$$
\begin{gathered}
t=0 \\
\text { initial time }
\end{gathered} \quad \longrightarrow \quad \begin{gathered}
t=T \text { or } t=\infty \\
\text { terminal time }
\end{gathered}
$$

- The solution for any control variable:

$$
\text { a single value } \quad \longrightarrow \quad \text { a complete time path }
$$

- Define $u(t)$ as a control variable, $y(t)$ as a state variable, and $F(t, y(t), u(t))$ as an instantaneous utility function.
$\Rightarrow \operatorname{Max} \int_{0}^{T} F(t, y, u) d t$
s.t. $\dot{y}=f(t, y, u) \quad+\quad$ other conditions
- Terminal Condition:

$$
y(T) \exp [-\bar{r}(T) \cdot T] \geq 0
$$

where $\bar{r}(t)$ is the average discount rate that between dates 0 and t.

$$
\begin{aligned}
\mathcal{L}= & \int_{0}^{T} F(t, y, u) d t+\int_{0}^{T}[\lambda(t) \cdot(f(t, y, u)-\dot{y})] d t+\mu \cdot y(T) \exp [-\bar{r}(T) \cdot T] \\
= & \int_{0}^{T}[F(t, y, u)+\lambda(t) f(t, y, u)] d t-\int_{0}^{T} \lambda(t) \dot{y} d t+\mu \cdot y(T) \exp [-\bar{r}(T) \cdot T] \\
& \text { integration by parts } \int_{0}^{T} \lambda d y=\left.\lambda y\right|_{0} ^{T}-\int_{0}^{T} y d \lambda \\
= & \int_{0}^{T} H(t, y, u, \lambda) d t+\int_{0}^{T} \frac{d \lambda}{d t} y d t+\lambda(0) y(0)-\lambda(T) y(T) \\
& +\mu \cdot y(T) \exp [-\bar{r}(T) \cdot T] \\
= & \int_{0}^{T}\left[H(t, y, u, \lambda)+\frac{d \lambda}{d t} y\right] d t+\lambda(0) y(0)-\lambda(T) y(T) \\
& +\mu \cdot y(T) \exp [-\bar{r}(T) \cdot T]
\end{aligned}
$$

- Define (Hamiltonian function)

$$
H(t, y, u, \lambda)=F(t, y, u)+\lambda(t) f(t, y, u)
$$

- Let $\widetilde{u}(t)$ and $\widetilde{y}(t)$ be the optimal time paths for u and y.
- Now, perturbing $\widetilde{u}(t)$ and $\widetilde{y}(t)$ by arbitrary perturbation function $p_{1}(t)$ and $p_{2}(t)$, and then get corresponding neighborhood paths:

$$
\begin{aligned}
u(t) & =\widetilde{u}(t)+\epsilon \cdot p_{1}(t) \\
y(t) & =\widetilde{y}(t)+\epsilon \cdot p_{2}(t) \\
y(T) & =\widetilde{y}(T)+\epsilon \cdot p_{2}(T)
\end{aligned}
$$

$$
\left.\Longrightarrow \quad \frac{\partial \mathcal{L}}{\partial \epsilon}\right|_{\epsilon=0}=0
$$

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \epsilon}= \frac{\partial}{\partial \epsilon}\left\{\int_{0}^{T}\left[H(t, y, u, \lambda)+\frac{d \lambda}{d t} y\right] d t+(\mu \exp [-\bar{r}(T) \cdot T]-\lambda(T)) y(T)\right\} \\
&= \int_{0}^{T}\left[\frac{\partial H}{\partial \epsilon}+\frac{d \lambda}{d t} \frac{\partial y}{\partial \epsilon}\right] d t+(\mu \exp [-\bar{r}(T) \cdot T]-\lambda(T)) \frac{\partial y(T)}{\partial \epsilon} \\
& \text { where } \quad \frac{\partial H}{\partial \epsilon}=\frac{\partial H}{\partial u} p_{1}(t)+\frac{\partial H}{\partial y} p_{2}(t) \\
& \frac{\partial y}{\partial \epsilon}=p_{2}(t) \quad \text { and } \quad \frac{\partial y(T)}{\partial \epsilon}=p_{2}(T) \\
&= \int_{0}^{T}\left[\frac{\partial H}{\partial u} p_{1}(t)+\left(\frac{\partial H}{\partial y}+\dot{\lambda}\right) p_{2}(t)\right] d t \\
&+(\mu \exp [-\bar{r}(T) \cdot T]-\lambda(T)) p_{2}(T)=0
\end{aligned}
$$

$\operatorname{Max} \int_{0}^{T} F(t, y, u) d t$
s.t. $\dot{y}=f(t, y, u) \quad+\quad$ other conditions

$$
H(t, y, u, \lambda)=F(t, y, u)+\lambda(t) f(t, y, u)
$$

(1) Pontryagin's maximum principle

$$
\frac{\partial H}{\partial u}=0 \quad \text { or } \quad H\left(t, y, u^{*}, \lambda\right) \geq H(t, y, u, \lambda)
$$

(2) state equation

$$
\dot{y}=\frac{\partial H}{\partial \lambda}=f(t, y, u)
$$

(3) costate equation

$$
\dot{\lambda}=-\frac{\partial H}{\partial y}
$$

(4) transversality condition
$\lambda(T) \geq 0$

Example 1

Find the shortest distance.

Example 2

$\operatorname{Max} \int_{0}^{1}\left(y-u^{2}\right) d t$
s.t. $\quad \dot{y}=u, \quad y(0)=5, \quad y(1)$ free

Example 3

$\operatorname{Max} \int_{0}^{2}(2 y-3 u) d t$
s.t. $\quad \dot{y}=y+u, \quad y(0)=4, \quad y(2)$ free, $\quad u(t) \in[0,2]$

Neoclassical Optimal Growth Model

$Y=Y(K, L)$ is a CRTS production function,

$$
\begin{aligned}
& Y_{L}>0, \quad Y_{K}>0, \quad Y_{L L}<0, \quad Y_{K K}<0 \\
\dot{K}= & I-\delta K \\
I= & S=Y-C \\
\Rightarrow & \dot{k}=y-c-(n+\delta) k=\phi(k)-c-(n+\delta) k
\end{aligned}
$$

$U(c)$ denotes the social welfare function

$$
\begin{aligned}
& U^{\prime}(c)>0, \quad U^{\prime \prime}(c)<0, \quad \lim _{c \rightarrow 0} U^{\prime}(c)=\infty, \quad \lim _{c \rightarrow \infty} U^{\prime}(c)=0 \\
& \quad \Rightarrow \quad V=\int_{0}^{\infty} U(c) e^{-\rho t} L_{0} e^{n t} d t=\int_{0}^{\infty} U(c) e^{-(\rho-n) t} d t
\end{aligned}
$$

$\operatorname{Max} \int_{0}^{\infty} U(c) e^{-(\rho-n) t} d t$
s.t. $\dot{k}=\phi(k)-c-(n+\delta) k$
and $\quad k(0)=k_{0}, \quad 0 \leq c(t) \leq \phi(k)$
$\Rightarrow \quad H=U(c) e^{-(\rho-n) t}+\lambda[\phi(k)-c-(n+\delta) k]$
(1) $\frac{\partial H}{\partial c}=U^{\prime}(c) e^{-(\rho-n) t}-\lambda=0$
(2) $\dot{k}=\frac{\partial H}{\partial \lambda}=\phi(k)-c-(n+\delta) k$
(3) $\dot{\lambda}=-\frac{\partial H}{\partial k}=-\lambda\left[\phi^{\prime}(k)-(n+\delta)\right]$

